On the issue of biological receptors: fundamental data that have been forgotten or neglected
Abstract
Aim. The biological action of chemical and physical factors can be carried out in three stages: (1) stimulation, (2) inhibition and (3) collapse of chemical reactions. Externally, these reactions manifest themselves as stimulation or inhibition of physiological (growth) processes or death of the biological object. There are still no convincing data on how these processes are regulated at the molecular level. Experimantal data on why some substances are biologically active while others are not in comparable doses are also absent. The structure of molecules that determine their biological activity has not been identified either. The aim of the study was to identify the specific structure of molecules that determine their biological activity based on the analysis of the steric structure of various chemical compounds. Results. After analyzing the structure of various biologically active substances (toxins, agricultural and pharmaceutical chemicals), the active hydrogen atom was identified at the N- or C-atoms in the bilateral environment by electron-withdrawing groups, as well as the presence of unsaturated bonds in aliphatic or cyclic structures, but not in aromatic cycles. Conclusions. It is concluded that such fragments of molecules determine the biological activity of chemical compounds.
References
Batt S., Wilkins M. B., Venis M. A. Auxin binding to corn coleoptile membranes: Kinetics and specificity. Planta. 1976. Vol. 130. P. 7–13. https://doi.org/10.1007/BF00390838.
Stout R. G., Cleland R. E. Partial characterization of fusicoccin binding to receptor sites on oat root membranes. Plant Physiol. 1980. Vol. 66. P. 353–359. https://doi.org/10.1104/pp.66.3.353.
Pauls K. P., Chambers J. A., Dumbroff E. B., Thompson J. E. Perturbation of phospholipid membranes by gibberellins. New Phytol. 1982. Vol. 91. P. 1–17. https://doi.org/10.1111/j.1469-8137.1982.tb03288.x.
Sussman M. R., Gardner G. Solubilization of the receptor for N-1-naphthylphthalamic acid. Plant Physiol. 1980. Vol. 66. P. 1074–1078. https://doi.org/10.1104/pp.66.6.1074.
Bretscrer M. S. Human erythrocyte membranes: Specific labelling of surface proteins. J. Mol. Biol. 1971. Vol. 58. P. 775–781. doi: 10.1016/0022-2836(71)90039-8.
Henderson R., Ritchie J. M., Strichartz G. R. The binding of labelled saxitoxin to the sodium channels in nerve membranes. J. Physiol. 1973. Vol. 235. P. 783–804. https://doi.org/10.1113/jphysiol.1973.sp010417.
Miledi R., Molinoff P., Potter L. Biological sciences: Isolation of the cholinergic receptor protein of Torpedo electric tissue. Nature. 1971. Vol. 229. P. 554–557. https://doi.org/10.1038/229554a0.
Sutcliffe H. S., Martin T. J., Eisman J. A., Pilczyk R. Binding of parathyroid hormone to bovine kidney-cortex plasma membranes. Biochem. J. 1973. Vol. 134. P. 913–921. https://doi.org/10.1042/bj1340913.
Moore H. D. M., Hibbitt K. G. The binding of labelled basic proteins by boar spermatozoa. J. Reprod. Fert. 1976. Vol. 46. P. 71–76. https://doi.org/10.1530/jrf.0.0460071.
Cheng K-W. Properties of follicle-stimulating-hormone receptor in cell membranes of bovine testis. Biochem. J. 1975. Vol. 149. P. 123–132. https://doi.org/10.1042/bj1490123.
Leterrier F., Mendyk A., Viret J. Interaction of chlorpromazine with biological membranes. A photochemical study using spin labels. Biochem. Pharmacol. 1976. Vol. 25. P. 2469–2474. https://doi.org/10.1016/0006-2952(76)90450-0.
Shoyab M., Todaro G. J. Specific high affinity cell membrane receptors for biologically active phorbol and ignenol esters. Nature. 1980. Vol. 288. P. 451–455. https://doi.org/10.1038/288451a0.
Kurchii B. A. Chemical structure of descriptors with an active hydrogen atom in certain bioregulators. Ukr. Biochem. J. (Kiev). 1996. Vol. 68. P. 3–13.
Kurchii B. A. The prediction of herbicidal activity and toxicity of chemicals using of descriptors which have an active hydrogen atom, unsaturated structures, and quaternary nitrogen. Plant Physiology. 1997. Vol. 114, No 3 (Supplement). Abstract number: 831.
Kurchii B. A. What regulate the growth regulators? Second edition. Revised and expanded. Kyiv (Ukraine): Logos Publisher, 2019. 209 p.
Albert A. Selective toxicity and related topics. 4th ed. London: Methuen and Co Ltd; 1968.
Konotsune T., Kawakubo K., Yanai T. Synthesis and herbicidal activity of 4-Acylpyrazole derivatives. In: Geissbühler H, Editor. Advances in pesticide science. Part 2. Synthesis of pesticides chemical structure and biological activity natural products with bio-logical activity. Pergamon Press, 1979. P. 94–98.
Kabara J. J., Swieczkowski D. M., Conley A. J., Truant J. P. Fatty acids and derivatives as antimicrobial agents. Antimicrob. Agents Chemother. 1972. Vol. 2. P. 23–28. https://doi.org/10.1128/AAC.2.1.23.
Zhao G., Etherton T. D., Martin K. R., Vanden Heuvel J. P., Gillies P. J., West S. G., Kris-Etherton P. M. Anti-inflammatory effects of polyunsaturated fatty acids in THP-1 cells. Biochem. Biophys. Res. Commun. 2005. Vol. 336. P. 909–917. https://doi.org/10.1016/j.bbrc.2005.08.204.
Kirino O., Takatama C., Yoshida M., Inoue S.,Yoshida R. Quantitative structure-activity relationships of the fungicidal and herbicidal thiocarbamates. Agric. Biol. Chem. 1988. Vol. 52. P. 561–568.
Nakagawa Y., Sotomatsu T., Irie K., Kitahara K., Iwamura H., Fujita T. Quantitative structure-activity studies of benzoylphenylurea larvicides: Pestic. Biochem. Physiol. 1987. Vol. 27. P. 143–155. https://doi.org/10.1016/0048-3575(87)90041-1.
Tissut M., Nurit F., Ravanel P., Mona S., Benevides N., Macherel D. Herbicidal mode of action depending on substitution in a phenylcarbamate serie. Physiol. Végét. 1986. Vol. 24. P. 523–535.
Lancini G., Parenti F. Antibiotics. An integrated view. 106 Abb., XI. New York, Heidelberg, Berlin: Springer Verlag; 1982. 253 s. https://doi.org/10.1002/ARDP.19843170221.
Sembner G., Gross D., Liebisch H. W., Schneider G. Biosynthesis and metabolism of plant hormones. In: MacMillan J., Editor. Encyclopedia of Plant Physiology: Hormonal Regulation of Development I. Vol 9. Berlin, Heidelberg, New York: Springer Verlag; 1980. P.281–444.
Buckheit R. W. Jr., Kinjerski T. L., Fliakas-Boltz V., et al. Structure-activity and cross-resistance evaluations of a series of human immunodeficiency virus type 1-specific compounds related to oxathiin carboxanilide. Antimicrob. Agents Chemother. 1995. Vol. 39. P. 2718–2727. https://doi.org/10.1128/AAC.39.12.2718.
Bérdy J. Bioactive microbial metabolites. A personal view. J. Antibiot. 2005. Vol. 58 (1). P. 1–26. https://doi.org/10.1038/ja.2005.1.
International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004. Vol. 431. P. 931–945. https://doi.org/10.1038/nature03001.
Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000. Vol. 408. P. 796–815. https://doi.org/10.1038/35048692.
Depuydt S., Hardtke C. S. Hormone signalling crosstalk in plant growth: review regulation. Curr. Biol. 2011. Vol. 21. P. R365–R373. https://doi.org/10.1016/j.cub.2011.03.013.