Comparative analysis of allosteric rearrangements in FtsZ protein structure induced by benzamide and 4-hydroxycoumarine compounds

Keywords: FtsZ, effectors, bacteria, allosteric regulation, structural rearrangements

Abstract

Aim. To reveal allosteric rearrangements of FtsZ molecules arising under the influence of benzamide compounds and 4-hydroxycoumarin derivatives. To discover the key molecular mechanisms predetermining the effect of the specified compounds on the cell division in bacteria. Methods. Comparative analysis of FtsZ protein structures and their complexes with ligands. Application of structural bioinformatics software for molecular visualization, measurement of interatomic distances and approximation of intramolecular shifts based on RMSD indicators. Results. Revealed conformational changes in FtsZ protein molecules, induced by allosteric effectors: 4-hydroxycoumarin – 4HC and benzamide – 9PC (PC-190723). Allosteric deformations and their consequences for intact FtsZ protein molecules, there GTPase domains, H7 helixes and C-terminal domains were studied. Conclusions. It was clarified that the binding of benzamides causes more significant shifts in the structure of the FtsZ protein monomer, its C-terminal domain, and H7 helix. At the same time, 4-hydroxycoumarins deform the structure of the GTPase domain almost twofold effectively. Both classes of compounds prosses allosteric action through unique mechanisms that are largely realized through deformations and displacements of the H7 helix. Despite the fact that these compounds demonstrate different allosteric mechanisms of action, their final effect can be summarized to destructions in GTP pocket, protofilament interfaces and the general geometry of molecule.

References

Karpov P. A., Demchuk O. M., Britsun V. M., Lytvyn D. I., Pydiura M. O., Rayevsky O. V., Samofalova D. O., Spivak S. I., Volochnyuk D. M., Yemets A. I., Blume Ya. B. New imidazole inhibitors of Mycobacterial FtsZ: the way from high-throughput molecular screening in Grid up to in vitro Verification. Science and Innovation (Nauka innov.). 2016. Vol. 12 (3). P. 44–59. doi: 10.15407/scin12.03.044.

Ozheriedov D. S., Karpov P. A. Structural profile of ligand-based inhibition of bacterial FtsZ. Faktori eksperimentalnoi evolucii organizmiv. 2023. Vol.3 2. P. 142–147. DOI: 10.7124/FEEO.v32.1551.

Casiraghi A., Suigo L., Valoti E., Straniero V. Targeting Bacterial Cell Division: A Binding Site-Centered Approach to the Most Promising Inhibitors of the Essential Protein FtsZ. Antibiotics (Basel). 2020. Vol. 9 (2). P. 69. doi: 10.3390/antibiotics9020069.

Adams D. W., Errington J. Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol. 2009. Vol. 7 (9). P. 642–653. doi: 10.1038/nrmicro2198.

Haeusser D. P., Margolin W. Splitsville: structural and functional insights into the dynamic bacterial Z ring. Nat Rev Microbiol. 2016. Vol. 14 (5). P. 305–319. doi: 10.1038/nrmicro.2016.26.

Erickson H. P., Anderson D. E., Osawa M. FtsZ in bacterial cytokinesis: cytoskeleton and force generator all in one. Microbiol Mol Biol Rev. 2010. Vol. 74 (4). P. 504–528. doi: 10.1128/MMBR.00021-10.

Faguy D. M., Doolittle W. F. Cytoskeletal proteins: the evolution of cell division. Curr Biol. 1998. Vol. 8 (10). R338-341. doi: 10.1016/s0960-9822(98)70216-7.

Matsui T., Han X., Yu J., Yao M., Tanaka I. Structural change in FtsZ Induced by intermolecular interactions between bound GTP and the T7 loop. J Biol Chem. 2014. Vol. 289 (6). P. 3501–3509. doi: 10.1074/jbc.M113.514901.

Alnami A., Norton R. S., Pena H. P., Haider S., Kozielski F. Conformational Flexibility of A Highly Conserved Helix Controls Cryptic Pocket Formation in FtsZ. J Mol Biol. 2021. Vol. 433 (15). P. 167061. doi: 10.1016/j.jmb.2021.167061.

Berman H. M., Westbrook J., Feng Z., Gilliland G., Bhat T. N., Weissig H., Shindyalov I. N., Bourne P. E. The Protein Data Bank. Nucleic Acids Res. 2000. Vol. 28 (1). P. 235–242. doi: 10.1093/nar/28.1.235.

Guan F., Yu J., Yu J., Liu Y., Li Y., Feng X.H., Huang K.C., Chang Z., Ye S. Lateral interactions between protofilaments of the bacterial tubulin homolog FtsZ are essential for cell division. Elife. 2018. Vol. 7. e35578. doi: 10.7554/eLife.35578.

Wagstaff J. M., Tsim M., Oliva M. A., García-Sanchez A., Kureisaite-Ciziene D., Andreu J. M., Löwe J. A Polymerization-Associated Structural Switch in FtsZ That Enables Treadmilling of Model Filaments. mBio. 2017. Vol. 8 (3). e00254-17. doi: 10.1128/mBio.00254-17.

Tan C. M., Therien A. G., Lu J., Lee S. H., Caron A., Gill C. J., Lebeau-Jacob C., Benton-Perdomo L., Monteiro J.M., Pereira P.M., et al. Restoring methicillin-resistant Staphylococcus aureus susceptibility to β-lactam antibiotics. Sci Transl Med. 2012. Vol. 4 (126). 126ra35. doi: 10.1126/scitranslmed.3003592.

Matsui T., Yamane J., Mogi N., Yamaguchi H., Takemoto H., Yao M., Tanaka I. Structural reorganization of the bacterial cell-division protein FtsZ from Staphylococcus aureus. Acta Crystallogr D Biol Crystallogr. 2012. Vol. 68 (Pt 9). P. 1175–1188. doi: 10.1107/S0907444912022640.

Martín-Galiano A. J., Buey R. M., Cabezas M., Andreu J. M. Mapping flexibility and the assembly switch of cell division protein FtsZ by computational and mutational approaches. J Biol Chem. 2010. Vol. 285 (29). P. 22554–22565. doi: 10.1074/jbc.M110.117127.