Аналіз ортологів гена MGMT людини у найпростіших еукаріот

  • О. В. Підпала
  • Л. Л. Лукаш

Анотація

Мета. Проаналізувати інтронні послідовності ортологів гена MGMT на ранніх етапах формування еукаріот на прикладі протистів. Методи. Гомологію між нуклеотидними послідовностями визначали програмою BLAST 2.6.1. Нуклеотидні послідовності бактеріальних та мітохондріальних інтронів ІІ групи взято для аналізу із бази даних Database for Bacterial Group II Introns. Результати пошуку та ідентифікації мобільних генетичних елементів здійснено за допомогою програми CENSOR. Результати. Еволюція гена не завжди узгоджується з еволюцією організму, зокрема, це простежується у соціальних амеб. У межах роду досліджуваний ген набував і втрачав інтрони. Простежується фрагментарна гомологія між різними структурними одиницями ортологів. Висновки. На основі одержаних результатів показано ендогенний мозаїчний характер формування структурних одиниць гена

Ключові слова: ортологи гена О6-метилгуанін-ДНК метилтрансферази (MGMT), Протисти, еволюція гена, сплайсосомні інтрони, втрата і набуття інтрону.

Посилання

Pegg A.E. Repair of O6-alkylguanine by alkyltransferases. Mutat. Res. 2000. Vol. 262. P. 83–100. doi: 10.1096/fasebj.6.6.1544541

Kaina B., Christmann M., Naumann S., Roos W.P. MGMT: key node in the battle against genotoxicity, carcinogenicity and apoptosis induced by alkylating agents. DNA Repair (Amst). 2007. Vol. 8. Р. 1079–1099. doi: 10.1016/j.dnarep.2007.03.008.

Pegg A.E. Multifaceted roles of alkyltransferase and related proteins in DNA repair, DNA damage, resistance to chemotherapy, and research tools. Chem. Res. Toxicol. 2011. Vol. 24. P. 618–639. doi: 10.1021/tx200031q.

Margison G.P., Butt A., Pearson S.J., Wharton S., Watson A.J., Marriott A., Caetano C.M., Hollins J.J., Rukazenkova N., Begum G., Santibáñez-Koref M.F. Alkyltransferase-like proteins. DNA Repair (Amst). 2007. Vol. 6. P. 1222–1228. doi: 10.1016/j.dnarep.2007.03.014.

Adl S.M., Simpson A.G., Farmer M.A., Andersen R.A., Anderson O.R., Barta J.R., Bowser S.S., Brugerolle G., Fensome R.A., Fredericq S., James T.Y., Karpov S., Kugrens P., Krug J., Lane C.E., Lewis L.A., Lodge J., Lynn D.H., Mann D.G., McCourt R.M., Mendoza L., Moestrup O., Mozley-Standridge S.E., Nerad T.A., Shearer C.A., Smirnov A.V., Spiegel F.W., Taylor M.F. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J. Eukaryot. Microbiol. 2005. Vol. 52. P. 399–451. doi: 10.1111/j.1550-7408.2005.00053.x.

Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature. 2000. Vol. 408. P. 796–815. doi: 10.1038/35048692

C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science. 1998. Vol. 282. P. 2012–2018. doi: 10.1126/science.282.5396.2012

Adams M.D., Celniker S.E., Holt R.A. The genome sequence of Drosophila melanogaster. Science. 2000. Vol. 287. P. 2185–2195. doi: 10.1126/science.287.5461.2185

Venter J.C., Adams M.D., Myers E.W. The sequence of the human genome. Science. 2001. Vol. 291. P.1304–1351. doi: 10.1126/science.1058040.

Ivachshenko A.T., Tauasarova M.K., Atambayeva S.A. Exon-intron structure of genes of fungi genomes. Molecular biology. 2009. Vol. 43. S. 28–35.

Ivashchenko А.T., Kabdullina A.A. Exon-intron organization of genes of some Protista species. Genety`ka y` by`otexnology`ya XXI veka. Fundamental`nye y` pry`kladnye aspekty. My`nsk: Y`zd. centr BGU, 2008. P. 241–243.

Rogozin I.B., Carmel L., Csuros M., Koonin E.V. Origin and evolution of spliceosomal introns. Biol. Direct. 2012. Vol. 7. P. 11. doi: 10.1186/1745-6150-7-11.

Bringaud F., Ghedin E., El-Sayed N.M., Papadopoulou B. Role of transposable elements in trypanosomatids. Microbes. Infect. 2008. Vol. 10. P. 575–581. doi: 10.1016/j.micinf.2008.02.009.

Lorenzi H., Thiagarajan M., Haas B., Wortman J., Hall N., Caler E. Genome wide survey, discovery and evolution of repetitive elements in three Entamoeba species. BMC Genomics. 2008. Vol. 10. P. 595. doi: 10.1186/1471-2164-9-595.

Thomas M.C., Macias F., Alonso C., López M.C. The biology and evolution of transposable elements in parasites. Trends Parasitol. 2010. Vol. 26. P. 350–362. doi: 10.1016/j.pt.2010.04.001.

Bradic M., Warring S.D., Low V., Carlton J.M. The Tc1/mariner transposable element family shapes genetic variation and gene expression in the protist Trichomonas vaginalis. Mob. DNA. 2014. Vol. 5. P. 12. doi: 10.1186/1759-8753-5-12.

Glockner G. Genome analysis of social Amoebae. In: Dictyostelids: Evolution, Genomics and Cell Biology. Eds M.Romeralo, S. Baldanf, R. Escalante. Springer Science and Business Media. 2013. P. 35–48. doi: 10.1007/978-3-642-38487-5.

Menssen A., Höhmann S., Martin W., Schnable P.S., Peterson P.A., Saedler H., Gierl A. The En/Spm transposable element of Zea mays contains splice sites at the termini generating a novel intron from a dSpm element in the A2 gene. EMBO J. 1990. Vol. 9. P. 3051–3057.

Giroux M.J., Clancy M., Baier J., Ingham L., McCarty D., Hannah L.C. De novo synthesis of an intron by the maize transposable element Dissociation. Proc. Natl. Acad. Sci. USA. 1994. Vol. 91. P. 12150–12154. doi: 10.1073/pnas.91.25.12150

Nouaud D., Boëda B., Levy L., Anxolabéhère D. A P element has induced intron formation in Drosophila. Mol. Biol. Evol. 1999. Vol. 16. P. 1503–1510. doi: 10.1093/oxfordjournals.molbev.a026062

Huff J.T., Zilberman D., Roy S.W. Mechanism for DNA transposons to generate introns on genomic scales. Nature. 2016. Vol. 538. P. 533–536. doi: 10.1038/nature20110.

Ma M.Y., Che X.R., Porceddu A., Niu D.K. Evaluation of the mechanisms of intron loss and gain in the social amoebae Dictyostelium. BMC Evol. Biol. 2015. Vol. 15. P. 286. doi: 10.1186/s12862-015-0567-y.

Roy S.W., Gilbert W. The evolution of spliceosomal introns: patterns, puzzlesand progress. Nat. Rev.Genet. 2006. Vol. 7. P. 211–221. doi: 10.1038/nrg1807.

Pidpala O.V., Lukash L.L. Recombinational origin of the nuclear introns. Factors in Experimental Evolution of Organisms. 2017. Vol. 20. P. 329–334.