Influence of mitochondrial DNA loss on the development of complex structured colonies of SK1 strains of yeast Saccharomyces cerevisiae

  • O. V. Pronina
  • S. R. Rushkovsky
  • B. V. Morgun
  • S. V. Demidov

Abstract

Aim. Determine the effect of mitochondrial DNA loss on the formation of complex yeast colonies of Saccharomyces cerevisiae. Methods. Development of giant colonies of the parent strain SK1 (rho+) and the "petit" strain SK1p, which lost mtDNA (rho0 mutation), was observed for 40 days,. To find out zones of cell death in colonies, both strains were cultured on solid YPD media containing dyes that accumulate in dead cells. The survival of the cells within colony was estimated by the ability to create microcolonies.  Results. The loss of mitochondrial DNA in SK1p cells led to a decrease in colony area and to simplification of colony morphology on the YPD medium. When SK1p colonies were cultivated on media with addition of dyes, bright spot was formed in the center due to the dyes accumulation  in dead cells. At the same time, parent strain developed a uniform insignificant coloration.  Conclusions. rho0 mutation in SK1p yeast strain Saccharomyces cerevisiae led to a significant simplification of complex colony structure that formed on the nutrient medium YPD. The mitochondrial DNA loss in strain SK1p results in an accelerated cell death in the center of colony on YPD.
Keywords: Saccharomyces cerevisiae, rho0, colonies, cell survival.

References

Wallace D.C. A Mitochondrial paradigm ofm and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 2005. Vol. 39. P. 359–407. doi: 10.1146/annurev.genet.39.110304.095751.

Galluzzi L., Morselli E., Kepp O., Vitale I., Rigoni A., Vacchelli E., Michaud M., Zischka H., Castedo M., Kroemer G. Mitochondrial gateways to cancer. Mol Aspects Med. 2009. Vol. 31. P. 1–20. doi: 10.1016/j.mam.2009.08.002.

Botstein D., Fink G. Yeast: an experimental organism for 21st century biology. Genetics. 2011. Vol. 189. P. 695–704. doi: 10.1534/genetics.111.130765.

Vachova L., Cap M., Palkova Z. Yeast Colonies: A model for studies of aging, environmental adaptation, and longevity. Oxidative Med Cell Longev. 2012 Art. N: 601836 doi: 10.1155/2012/601836.

Cap M., Vachova L., Palkova Z., Longevity of U cells of differentiated yeast colonies grown on respiratory medium depends on active glycolysis. Cell Cycle. 2015. Vol. 14, No. 21, P. 3488–3497. doi: 10.1080/15384101.2015.1093706.

Podholová K., Plocek V., Rešetárová S., Kučerová H., Hlaváček O., Váchová L., Palková Z. Divergent branches of mitochondrial signaling regulate specific genes and the viability of specialized cell types of differentiated yeast colonies. Oncotarget, 2016. Vol. 7, No. 13. P. 15299–15314. doi: 10.18632/oncotarget.8084.

Reynolds T.B., Fink G.R. Bakers' yeast, a model for fungal biofilm formation. Science. 2001. Vol. 291. P. 878–881. doi: 10.1126/science.291.5505.878.

Honigberg S.M. Cell signals, cell contacts, and the organization of yeast communities. Eukaryot Cell. 2011. Vol. 10. P. 466–473. doi: 10.1128/EC.00313-10.

Maršíková J., Wilkinson D., Hlaváček O., Gilfillan G. D., Mizeranschi A., Hughes T., Begany M., Rešetárová S., Váchová L., Palková Z. Metabolic differentiation of surface and invasive cells of yeast colony biofilms revealed by gene expression profiling. BMC Genomics. 2017. Vol. 18. P. 1–16. doi: 10.1186/s12864-017-4214-4.

Arlia-Ciommoy A., Pianoy A., Leonov A., Svistkova V., Titorenko V. Quasi-programmed aging of budding yeast: a trade-off between programmed processes of cell proliferation, differentiation, stress response, survival and death defines yeast lifespan. Cell Cycle. 2014. Vol. 13, No. 21. P. 3336-3349. doi: 10.4161/15384101.2014.965063.

Honigberg S.M. Similar environments but diverse fates: responses of budding yeast to nutrient deprivation. Microbial Cell. 2016. Vol. 3, No. 8. P. 302–328. doi: 10.15698/mic2016.08.516.

Chandel N.S., Schumacker P.T. Cells depleted of mitochondrial DNA (p0) yield insight into physiological. FEBS Lett. 1999. Vol. 454. P. 173–176. doi: 10.1016/S0014-5793(99)00783-8.

Aun A., Tamm T., Sedman J. Dysfunctional mitochondria modulate cAMP-PKA signaling and filamentous and invasive growth of Saccharomyces cerevisiae. Genetics. 2012. Vol. 193. P. 467–481. doi: 10.1534/genetics.112.147389.

Strudwick N., Brown M., Parmar V.M., Schroder M. Ime1 and Ime2 are required for pseudohyphal growth of Saccharomyces cerevisiae on nonfermentable carbon sources. Mol. Cell. Biol. 2010. Vol. 30, No. 23. P. 5514–5530. doi: 10.1128/MCB.00390-10.

Kane SM, Roth J. Carbohydrate metabolism during ascospore development in yeast. Bacteriol. 1974. Vol. 118. P. 8–14.

Kurzweilova H, Sigler K. Fluorescent staining with bromocresol purple: a rapid method for determining yeast cell dead count developed as an assay of killer toxin activity. Yeast. 1993. Vol. 9. P. 1207–1211. doi: 10.1002/yea.320091107.

Nagai S. Brom cresol green and brom phenol blue as indicators of respiration deficiency in yeast technology. Stain technology. 1965. Vol. 40, No. 3. P. 147–150.

Kucsera J., Yarita K., Takeo K. Simple detection method for distinguishing dead and living yeast colonies. Journal of Microbiological Methods. 2000. Vol. 41. P. 19–21. doi: doi.org/10.1016/S0167-7012(00)00136-6.

Quinn G. P., Keough M. J. Experimental design and data analysis for biologists. New York: Cambridge University Press, 2002. 553 p.