Рекомбінаційне походження ядерних інтронів

  • О. В. Підпала Інститут молекулярної біології та генетики НАН України, Україна, 03680, м. Київ, вул. Акад. Заболотного, 150
  • Л. Л. Лукаш Інститут молекулярної біології та генетики НАН України, Україна, 03680, м. Київ, вул. Акад. Заболотного, 150

Анотація

Aim. It has been analyzed the intron sequences homologs О6-methylguanin-DNA methyltransferase (MGMT, AGT) genes on the early stages of their formation in eukaryotic organisms. Methods. Homologous regions have been defined by the program BLASTN 2.6.1. Searching and identifying of the MGEs have been realized by using CENSOR. Results. It has been found that same homologous fragments without introns genes MGT1 S. cerevisiae and agt D. melanogaster may be take part in the formation of different structure part of the agt-1 C. elegans gene. Also it has been found the fragments of homology between various introns and exons of the agt-1 C. elegans and mgmt D. rerio genes. Conclusions. The obtained results allow suggested about recombinogenic nature of the formation of spliceosomal introns.

Keywords: О6-methylguanin-DNA methyltransferase (MGMT or AGT) gene homologs, spliceosomal introns, origin of introns, mobile genetic elements (MGEs), recombinogenesis.

Посилання

Rogozin I.B., Carmel L., Csuros M., Koonin E.V. Origin and evolution of spliceosomal introns. Biol. Direct. 2012. No. 7. P. 11. doi: 10.1186/1745-6150-7-11.

Jo B.S., Choi S.S. Introns: The Functional Benefits of Introns in Genomes. Genomics Inform. 2015. V. 13(4). P. 112–118. doi: 10.5808/GI.2015.13.4.112.

Darnell J.E., Doolittle W.F. Speculations on the early course of evolution. Proc. Natl. Acad. Sci. USA. 1986. V. 83(5). P. 1271-1275. doi: 10.1073/pnas.83.5.1271

Gilbert W. Origin of life: The RNA world. Nature. 1986. V. 319. P. 618. doi: 10.1038/319618a0

Cavalier-Smith T. Intron phylogeny: a new hypothesis. Trends Genet. 1991. V. 7(5). P. 145-148. doi: 10.1016/0168-9525(91)90377-3

Mattick J.S. Introns: evolution and function. Curr. Opin. Genet. Dev. 1994. V. 4(6). P. 823-831. doi: 10.1016/0959-437X(94)90066-3

Fedorova L., Fedorov A. Introns in gene evolution. Genetica. 2003. V. 118(2-3). P. 123-131. doi: 10.1023/A:1024145407467

Rogozin I.B., Wolf Y.I., Sorokin A.V., Mirkin B.G., Koonin E.V. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr. Biol. 2003. V. 13(17). P. 1512-1517. doi: 10.1016/S0960-9822(03)00558-X

Koonin E.V. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol. Direct. 2006. V. 14(1). P. 22.

Toro N., Jiménez-Zurdo J.I., García-Rodríguez F.M. Bacterial group II introns: not just splicing. FEMS Microbiol Rev. 2007. V. 31(3). P. 342-358. doi: 10.1111/j.1574-6976.2007.00068.x

Keating K.S., Toor N., Perlman P.S., Pyle A.M. A structural analysis of the group II intron active site and implications for the spliceosome. RNA. 2010. V. 16(1). P. 1-9. doi: 10.1261/rna.1791310

Hickey D.A., Benkel B. Introns as relict retrotransposons: implications for the evolutionary origin of eukaryotic mRNA splicing mechanisms. J. Theor. Biol. 1986. V. 121(3). P. 283-291. doi: 10.1016/S0022-5193(86)80108-4

Purugganan M.D. Transposable elements as introns: evolutionary connections. Trends Ecol. Evol. 1993. V. 8(7). P. 239-243. doi: 10.1016/0169-5347(93)90198-X

Roy S.W. The origin of recent introns: transposons?. Genome Biol. 2004. V. 5(12). P. 251. doi: 10.1186/gb-2004-5-12-251

Menssen A., Höhmann S., Martin W., Schnable P.S., Peterson P.A., Saedler H., Gierl A. The En/Spm transposable element of Zea mays contains splice sites at the termini generating a novel intron from a dSpm element in the A2 gene. EMBO J. 1990. V. 9(10). P. 3051-3057. doi: 10.1002/j.1460-2075.1990.tb07501.x

Giroux M.J., Clancy M., Baier J., Ingham L., McCarty D., Hannah L.C. De novo synthesis of an intron by the maize transposable element Dissociation. Proc. Natl. Acad. Sci. USA. 1994. V. 91(25). P. 12150-12154. doi: 10.1073/pnas.91.25.12150

Iwamoto M., Maekawwa M., Saito A., Higo H., Higo K. Evolutionary relationship of plant catalase genes inferred from exon-intron structures: isozyme divergence after the separation of monocots and dicots. Theor. Appl. Genet. 1998. V. 97. P. 9-19. doi: 10.1007/s001220050861

Nouaud D., Boëda B., Levy L., Anxolabéhère D.A. P element has induced intron formation in Drosophila. Mol. Biol. Evol. 1999. V. 16(11). P. 1503-1510. doi: 10.1093/oxfordjournals.molbev.a026062

Huff J.T., Zilberman D., Roy S.W. Mechanism for DNA transposons to generate introns on genomic scales. Nature. 2016. V. 538(7626). P. 533-536. doi: 10.1038/nature20110

Carmel L., Wolf Y.I., Rogozin I.B., Koonin E.V. Three distinct modes of intron dynamics in the evolution of eukaryotes. Genome Res. 2007. V. 17(7). P. 1034-1044. doi: 10.1101/gr.6438607

Csuros M., Rogozin I.B., Koonin E.V. A detailed history of intron-rich eukaryotic ancestors inferred from a global survey of 100 complete genomes. PLoS ComputBiol. 2011. V. 7(9). e1002150. doi: 10.1371/journal.pcbi.100215.