Поліморфізм довжини інтронів генів β-тубуліну у Deschampsia antarctica Desv. з морської Антарктики
Анотація
Aim. The use of molecular markers for DNA-Fingerprinting provides an efficient way to carry out precise and rapid species identification. Tubulin-Based-Polymorphism (TBP) was originally introduced as a novel method for assaying genetic diversity in plants. Antarctic hair grass (Deschampsia antarctica E Desv.) is the only representative of the grass family (Poaceae) distributed in Antarctic. Antarctic species range is extended in the longitudinal direction and includes a number of islands with different areas. The aim of this study was to develop primers for amplification of the second intron of D. antarctica β-tubulin genes and to investigate molecular genetic differentiation D. antarctica populations from two distant regions of maritime Antarctic using TBP-analysis and its variations. Methods. D. antarctica plants from the Argentine islands and King George Island (South Shetland Islands) were studied. To analyze genetic variation, different methods of tubulin polymorphism analysis were used, such as TBP, с-ТВР, and h-TBP. Amplified fragments were fractionated by electrophoresis on non-denaturing polyacrylamide gel and DNA bands were detected using silver staining. Results. The size of amplified fragments of β-tubulin genes were ranged from 370 bp to 1300 bp for TBP method, from 1100 bp to 1700 bp for h-TBP, from 320 bp to 1750 bp for c-TBP with degenerate primers, and from 345 bp to 1180 bp for c-TBP with specific primers. No variation was detected in profiles of PCR-products generated with different primers. Conclusions. D. antarctica from two distant regions of maritime Antarctic demonstrate genetic ho-mogeneity by β-tubulin genes intron length.
Keywords: Deschampsia antarctica E Desv., molecular markers, β-tubulin, tubulin based polymorphism.
Посилання
Bardini M., Lee D., Donini P., Mariani A., Giani S., Toschi M., Lowe C., Breviario D. Tubulin-based polymorphism (TBP): a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species. Genome. 2004. V. 47. P. 281-291. doi: 10.1139/g03-132
Breviario D., Giani S., Ponzoni T., Mastromauro F., Morell L. Plant tubulin intronics. Cell Biol. Int. 2008. V. 32. P. 571-573. doi: 10.1016/j.cellbi.2007.11.013
Braglia L., Manca A., Mastromauro F., Breviario D. cTBP: A successful intron length polymorphism (ILP)-based genotyping method targeted to well defined experimental needs. Diversity. 2010. V. 2. P. 572-585. doi: 10.3390/d2040572
Breviario D., Baird W.V., Sangoi S., Hilu K., Blumetti P., Giani S. High polymorphism and resolution in targeted fingerprinting with combined β-tubulin introns. Mol. Breed. 2007. V. 20. P. 249-259. doi: 10.1007/s11032-007-9087-9
Galasso I., Manca A., Braglia L., Martinelli T., Morello L., Breviario D. h-TBP: an approach based on intron-length polymorphism for the rapid isolation and characterization of the multiple members of the β-tubulin gene family in Camelina sativa (L.) Crantz. Mol. Breeding. 2010. V. 28. P. 635-645. doi: 10.1007/s11032-010-9515-0
Rabokon' A.N., Pirko Ia.V., Demkovich A.E., Blium Ia.B. Polimorfizm dliny intronov genov beta-tubulina kak effektivnyy instrument genotipirovaniia rasteniy. Mol. i prikl. genetika: Cb. nauch. tr. Minsk. 2015. V. 19. P. 35–44. [in Russian]
Pirko Ya.V. Doslidzhennia henetychnoi minlyvosti riznykh vydiv roslyn za dopomohoiu analizu polimorfizmu introniv heniv β-tubulinu. Promyshlennaia botanyka. 2011. No. 11. P. 152–156. [in Ukrainian]
Rabokon A.M., Demkovych A. Ie., Pirko Ya.V., Blium Ya.B. Studing of ß-tubulin gene intron length polymorphizm of Triticum aestivum L. and Hordeum vulgare L. varieties. Faktori eksperimental'noi evolucii organizmiv. 2015. V. 17. P. 82–86. [in Ukrainian]
Rabokon A. N., Demkovych A.Ie., Pirko Ya.V., Blium Ya.B. Studying of intron length polymorphism of β-tubulin genes in plants of genus Linum L. Faktori eksperimental'noi evolucii organizmiv. 2016. V. 19. P. 43–46. [in Russian]
Тwardovska М.О., Andreev І.О., Аmosova А.V., Spiridonova K.V., Navrotska D.О., Samatadze Т.Е., Zoschuk S.А., Muravenko O.V., Kunakh V.A. Study of genomes in Deschampsia antarctica Desv. from different localities of Maritime Antarctic using chromosomal and molecular markers. Faktori eksperimental'noi evolucii organizmiv. 2014. V. 14. P. 133–137. [in Ukrainian]
Chwedorzewska K.J., Gieіwanowska I., Szczuka E., Bochenek A. High anatomical and low genetic diversity in Deschampsia antarctica Desv. from King George Island, the Antarctic. Pol. Polar Res. 2008. V. 29(4). P. 377–386.
van de Wouw M.J., Van Dijk P.J., Huiskes A.H.L. Regional genetic diversity patterns in Antarctic hairgrass (Deschampsia antartica Desv.). Journal of Biogeography. 2008. V. 35 (2). P. 365–376. doi: 10.1111/j.1365-2699.2007.01784.x.
Doyle J.J., Doyle J.L. A rapid DNA isolation of fresh leaf tissue. Phytochem. Bull. 1987. V. 19. P. 11–15.
Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J., Higgins D.G. Clustal W and Clustal X version 2.0. Bioinformatics. 2007. V. 23. P. 2947-2948. doi: 10.1093/bioinformatics/btm404
Sambrook J., David W.R. Molecular Сloning: A Laboratory Manual. Cold Spring Harbor. 2001. V. 2. 763 p.
Benbouza H., Jean-Marie J., Jean-Pierre B. Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels. Biotechnol. Agron. Soc. Environ. 2006. V. 10(2). P. 77-81.
Parnikoza I., Kozeretska I., Kunakh V. Vascular plants of the Maritime Antarctic: origin and adaptation. Am. J. Plant Sci. 2011. V. 2(3). P. 381-395. doi: 10.4236/ajps.2011.23044