Відмінності амінокіслотного складу α-тубулінів Daucus carota, що потенційно обумовлюють стійкість до гербіцидів динітроанілінового ряду

  • О. Г. Мельник Інститут харчової біотехнології та геноміки НАН України, Україна, 04123, м. Київ, вул. Байди-Вишневецького, 2А https://orcid.org/0000-0002-4249-9175
  • Р. Я. Блюм Інститут харчової біотехнології та геноміки НАН України, Україна, 04123, м. Київ, вул. Байди-Вишневецького, 2А https://orcid.org/0000-0003-4936-1803
  • П. А. Карпов Інститут харчової біотехнології та геноміки НАН України, Україна, 04123, м. Київ, вул. Байди-Вишневецького, 2А https://orcid.org/0000-0002-6876-642X
Ключові слова: α-тубулін, динітроанілін, резистентність, оризалін, мікротрубочки, гербіциди

Анотація

Мета. Виявити особливості амінокислотного складу ізотипів α-тубуліну Daucus carota, котрі могли б обумовлювати природну стійкість до дії гербіцидів динітроанілінового ряду. Методи. Аналіз баз даних та літературних джерел. Вирівнювання послідовностей і філогенетичний аналіз. Порівняльний аналіз структур білків, лігандів та їх комплексів. Результати. Геномний і протеомний аналіз D. carota виявив щонайменше 8 унікальних ізотипів α-тубуліну, які відрізняються за амінокислотними послідовностями, а також, локусами генів. Амінокислотний склад у ділянці, котра топологічно відповідає сайту зв’язування динітроанілінів (DBL) виявив у досліджених α-тубулінів відмінності, які потенційно обумовлюють природну стійкість D. carota до цих сполук. Висновки. Знайдено відмінності канонічних амінокислот у положеннях, що відповідають відомим мутаціям – Cys4 (TBA 1, 2, 3, 6, 7 і 8), Thr53 (TBA 6), Ile202 (TBA 1 і 7) і Met202 (TBA 5), а також неописані раніше неканонічні заміни – Ile4 (TBA 4 і 5), Cys52 (TBA 6), Ser201 (TBA 1, 2, 3 і 8) і Val194 (TBA 4 і 5), що були відібрані як ті, що потенційно обумовлюють природну толерантність D. carota до гербіцидів динітроанілінового ряду.

Посилання

Vaughan M. A., Vaughn K. C. Carrot microtubules are dinitroaniline resistant. I. Cytological and cross-resistance studies. Weed Research. 1988. Vol. 28. P. 73–83. doi: 10.1111/j.1365-3180.1988.tb00789.x.

Chen J., Yu Q., Patterson E., Sayer C., Powles S. Dinitroaniline herbicide resistance and mechanisms in weeds. Front Plant Sci. 2021. Vol. 25. 12. # 634018. doi: 10.3389/fpls.2021.634018.

Oakley B. R. Microtubule mutants. Can J Biochem Cell Biol. 1985. Vol. 63 (6). P. 479–488. doi: 10.1139/o85-067.

Akella J. S., Wloga D., Kim J., Starostina N. G., Lyons-Abbott S., Morrissette N. S., Dougan S. T., Kipreos E. T., Gaertig J. MEC-17 is an alpha-tubulin acetyltransferase. Nature. 2010. Vol. 467 (7312). P. 218–222. doi: 10.1038/nature09324.

Anthony R. G., Reichelt S., Hussey P. J. Dinitroaniline herbicide-resistant transgenic tobacco plants generated by cooverexpression of a mutant alpha-tubulin and a beta-tubulin. Nat Biotechnol. 1999. Vol. 17 (7). P. 712–716. doi: 10.1038/10931.

Chen J., Yu Q., Owen M., Han H., Powles S. Dinitroaniline herbicide resistance in a multiple-resistant Lolium rigidum population. Pest Manag Sci. 2018. Vol. 74 (4). P. 925–932. doi: 10.1002/ps.4790.

Chu Z., Chen J., Nyporko A., Han H., Yu Q., Powles S. Novel α-tubulin mutations conferring resistance to dinitroaniline herbicides in Lolium rigidum. Front Plant Sci. 2018. Vol. 9: 97. eCollection. 2018. doi: 10.3389/fpls.2018.00097.

Délye C., Menchari Y., Michel S., Darmency H. Molecular bases for sensitivity to tubulin-binding herbicides in green foxtail. Plant Physiol. 2004. Vol. 136 (4). P. 3920–3932. doi: 10.1104/pp.103.037432.

Gaertig J., Thatcher T. H., Gu L., Gorovsky M. A. Electroporation-mediated replacement of a positively and negatively selectable beta-tubulin gene in Tetrahymena thermophila. Proc Natl Acad Sci U S A. 1994. Vol. 91 (10). P 4549–4553. doi: 10.1073/pnas.91.10.4549.

Hashim S., Jan A., Sunohara Y., Hachinohe M., Ohdan H., Matsumoto H. Mutation of alpha-tubulin genes in trifluralin-resistant water foxtail (Alopecurus aequalis). Pest Manag Sci. 2012. Vol. 68 (3). P. 422–429. doi: 10.1002/ps.2284.

James S. W., Silflow C. D., Stroom P., Lefebvre P. A. A mutation in the alpha 1-tubulin gene of Chlamydomonas reinhardtii confers resistance to anti-microtubule herbicides. J Cell Sci. 1993. Vol. 106 (Pt. 1). P. 209–218. doi: 10.1242/jcs.106.1.209.

Lyons-Abbott S., Sackett D. L., Wloga D., Gaertig J., Morgan R. E., Werbovetz K. A., Morrissette N. S. α-Tubulin mutations alter oryzalin affinity and microtubule assembly properties to confer dinitroaniline resistance. Eukaryot Cell. 2010. Vol. 9 (12). P. 1825–1834. doi: 10.1128/EC.00140-10.

Ma C., Li C., Ganesan L., Oak J., Tsai S., Sept D., Morrissette N. S. Mutations in alpha-tubulin confer dinitroaniline resistance at a cost to microtubule function. Mol Biol Cell. 2007. Vol. 18 (12). P. 4711–4720. doi: 10.1091/mbc.e07-04-0379.

Ma C., Tran J., Li C., Ganesan L., Wood D., Morrissette N. Secondary mutations correct fitness defects in Toxoplasma gondii with dinitroaniline resistance mutations. Genetics. 2008. Vol. 180 (2). P. 845–856. doi: 10.1534/genetics.108.092494.

Morrissette N. S., Sept D. Dinitroaniline interactions with tubulin: genetic and computational approaches to define the mechanisms of action and resistance. In The Plant Cytoskeleton: a Key Tool for Agro-Biothecnology; Blume Ya. B., Baird W. V., Yemets A. I., Breviario D., Eds. Springer, 2008. P. 327–349.

Varberg J. M., Padgett L. R., Arrizabalaga G., Sullivan W. J. Jr. TgATAT-Mediated α-Tubulin Acetylation Is Required for Division of the Protozoan Parasite Toxoplasma gondii. mSphere. 2016. Vol. 1 (1). e00088-15. doi: 10.1128/mSphere.00088-15.

Yamamoto E., Zeng L., Baird W. V. Alpha-tubulin missense mutations correlate with antimicrotubule drug resistance in Eleusine indica. Plant Cell. 1998. Vol. 10 (2). P. 297–308. doi: 10.1105/tpc.10.2.297.

Aguayo-Ortiz R., Dominguez L. Unveiling the Possible Oryzalin-Binding Site in the α-Tubulin of Toxoplasma gondii. ACS Omega. 2022. Vol. 7 (22). P. 18434–18442. doi: 10.1021/acsomega.2c00729.

Mitra A., Sept D. Binding and interaction of dinitroanilines with apicomplexan and kinetoplastid alpha-tubulin. J Med Chem. 2006. Vol. 49 (17). P. 5226–5231. doi: 10.1021/jm060472+.

Morrissette N. S., Mitra A., Sept D., Sibley L. D. Dinitroanilines bind alpha-tubulin to disrupt microtubules. Mol Biol Cell. 2004. Vol. 15 (4). P. 1960–1968. doi: 10.1091/mbc.e03-07-0530.

Blume Y. B., Nyporko A. Y., Yemets A. I., Baird W. V. Structural modeling of the interaction of plant alpha-tubulin with dinitroaniline and phosphoroamidate herbicides. Cell Biol Int. 2003. Vol. 27 (3). P. 171–174. doi: 10.1016/s1065-6995(02)00298-6.

Nyporko A. Y., Yemets A. I., Brytsun V. N., Lozinsky M. O., Blume Y. B. Structural and biological characterization of the tubulin interaction with dinitroanilines. Cytol. Genet. 2009. Vol. 43. P. 267–282. doi: 10.3103/S0095452709040082.

Yang J., Wang Y., Wang T., Jiang J., Botting C.H., Liu H., Chen Q., Yang J., Naismith J.H., Zhu X., Chen L. Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule. Nat Commun. 2016. Vol. 7. #12103. doi: 10.1038/ncomms12103.

Ladunga I. Finding Homologs in Amino Acid Sequences Using Network BLAST Searches. Curr Protoc Bioinformatics. 2017. Vol. 59. P. 3.4.1–3.4.24. doi: 10.1002/cpbi.34.

Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987. Vol. 4 (4). P. 406–425. doi: 10.1093/oxfordjournals.molbev.a040454