Використання ділянки psbA-trnH для ДНК-баркодінгу Aconitum anthora L. та споріднених таксонів
Анотація
Мета. Рід Aconitum представлений значною кількістю ендемічних видів у Карпатському регіоні. Частина з цих видів, зокрема A. pseudanthora та A. jacquinii, занесені до Червоної книги України, проте їх таксономічний статус і, відповідно, важливість збереження природних ресурсів залишаються досі не визначеними. Допомогти у з’ясуванні цих питань можуть методи ДНК-баркодінгу, зокрема використання молекулярних маркерів на основі мінливих ділянок хлоропластного геному. Методи. Виділення ДНК, ПЛР-ампліфікація, сиквенування ПЛР-продуктів, філогенетичний аналіз. Результати. Ампліфіковано та сиквеновано послідовності міжгенного спейсера psbA-trnH для зразків A. pseudanthora та A. jacquinii з території Західної України. З’ясовано, що послідовності спейсера для цих двох видів є ідентичними, проте відрізняються точковими інделами та нуклеотидними замінами від послідовностей psbA-trnH зразків A. anthora s.l. з територій Західної Європи та Китаю. Філогенетичний аналіз продемонстрував спорідненість представників комплексу A. anthora до підроду Lycoctonum. Висновки. Використання для ДНК-баркодінгу міжгенного спейсера psbA-trnH дозволяє чітко відрізнити зразки A. jacquinii та A. pseudanthora з території Західної України від зразків A. anthora s.l. іншого географічного походження. Отримані результати підтверджують сітчастий характер еволюції представників роду Aconitum.
Посилання
Bruni I., De Mattia F., Galimberti A., Galasso G., Banfi E., Casiraghi M., Labra M. Identification of poisonous plants by DNA barcoding approach. Int. J. Legal Med. 2010. Vol. 124 (6). P. 595–603. doi: 10.1007/s00414-010-0447-3
He J., Wong K.L., Shaw P.C., Wang H., Li D.Z. Identification of the medicinal plants in Aconitum L. by DNA barcoding tech-nique. Planta medica. 2010. Vol. 76 (14). P. 1622-1628. doi: 10.1055/s-0029-1240967
Wang W., Liu Y., Yu S.X., Gao T.G., Chen Z.D. Gymnaconitum, a new genus of Ranunculaceae endemic to the Qinghai–Tibetan Plateau. Taxon. 2013. 62 (4). P. 713–722. doi: 10.12705/624.10
Mitka J., Sutkowska A., Ilnicki T., Joachimiak A. Reticulate evolution of high-alpine Aconitum (Ranunculaceae) in the Eastern Carpathians (Central Europe). Acta Biologica Cracoviensia. Series Botanica. 2007. Vol. 49 (2).
Ziman S.M., Bulakh O.V. Genus Aconitum L. (Ranunculaceae Juss.) within the flora of the Ukrainian Carpathians: comparative-morphological and taxonomic study. Biol. syst. 2011. Vol. 3 (2). P. 142–149. [in Ukrainian]
Garrido-Cardenas J.A., Mesa-Valle C., Manzano-Agugliaro F. Trends in plant research using molecular markers. Planta. 2018. Vol. 247 (3). P. 543–557. doi: 10.1007/s00425-017-2829-y.
Kumari K., Bhargava S., Singh R. Molecular depiction of thirteen Indian toxic plants with ITS markers. Arab J. Forens. Sci. & Forens. Med. 2020. Vol. 2 (2). P. 159–169. doi: 10.26735/YGUY5295.
Kim Y., Yi J.S., Min J., Xi H., et al. The complete chloroplast genome of Aconitum coreanum (H. Lév.) Rapaics (Ranuncula-ceae). Mitochondrial DNA Part B. 2019. Vol. 4 (2). P. 3404–3406. doi: 10.1080/23802359.2019.1674213.
Novikoff A.V., Mitka J. Taxonomy and ecology of the genus Aconitum L. in the Ukrainian Carpathians. Wulfenia 2011. Vol. 18. P. 37–61.
Boron P., Wróblewska A., Binkiewicz B., Mitka J. Phylogeny of Aconitum subgenus Aconitum in Europe. Acta Soc. Bot. Pol. 2020. Vol. 89 (3). doi: 10.5586/asbp.8933.
Didukh Y. Red Data Book of Ukraine. Vegetable Kingdom Afterword. Biodiversity Research and Conservation. 2010. Vol. 19. P. 87–92.
Storchova H., Olson M.S. The architecture of the chloroplast psbA-trnH non-coding region in angiosperms. Plant Syst. Evol. 2007. Vol. 268 (1). P. 235–256. doi: 10.1007/s00606-007-0582-6.
Hong Y., Luo Y., Gao Q., Ren C., Yuan Q., Yang Q.E. Phylogeny and reclassification of Aconitum subgenus Lycoctonum (Ra-nunculaceae). Plos One. 2017. Vol. 12 (1). e0171038. doi: 10.1371/journal.pone.0171038.
Porebski S., Bailey L.G., Baum B.R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 1997. Vol. 15 (1). P. 8–15. doi: 10.1007/BF02772108.
Panchuk I.I., Volkov R.A. Practical course in molecular genetics. Chernivtsi: Ruta. 2007. 120 p. [in Ukrainian]
Ye J., McGinnis S., Madden T.L. BLAST: improvements for better sequence analysis. Nucleic acids research. 2006. Vol. 34 (2). P. 6–9. doi: 10.1093/nar/gkl164.
Katoh K., Rozewicki J., Yamada K.D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinformatics. 2019. Vol. 20. P. 1160–1166. doi: 10.1093/bib/bbx108.
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: molecular evolutionary genetics analysis across computing plat-forms. Mol. Biol. Evol. 2018. Vol. 35 (635). P. 1547–1549. doi: 10.1093/molbev/msy096.
Utelli A.B., Roy B.A., Baltisberger M. Molecular and morphological analyses of European Aconitum species (Ranunculaceae). Plant Syst. Evol. 2000. Vol. 224 (3). 195–212. doi: 10.1007/BF00986343.
Park I., Kim W.J., Yang S., Yeo S.M., Li H., Moon B.C. The complete chloroplast genome sequence of Aconitum coreanum and Aconitum carmichaelii and comparative analysis with other Aconitum species. Plos ONE. 2017. Vol. 12 (9). e0184257. doi: 10.1371/journal.pone.0184257.
Zhai W., Duan X., Zhang R., Guo C., et al. Chloroplast genomic data provide new and robust insights into the phylogeny and evolution of the Ranunculaceae. Mol. Phyl. Evol. 2019. Vol. 135. P. 12–21. doi: 10.1016/j.ympev.2019.02.024.
Lim C.E., Kim G.B., Baek S., Han S.M., et al. The complete chloroplast genome of Aconitum chiisanense Nakai (Ranuncula-ceae). Mitochondrial DNA Part A. 2017. Vol. 28 (1). P. 75–76.
He J., Yao M., Lyu R.D., Lin L.L. Structural variation of the complete chloroplast genome and plastid phylogenomics of the genus Asteropyrum (Ranunculaceae). Scientific reports. 2019. Vol. 9 (1). P. 1–13.
Luo Y., Zhang F.M., Yang Q.E. Phylogeny of Aconitum subgenus Aconitum (Ranunculaceae) inferred from ITS sequences. Plant Syst. Evol. 2005. Vol. 252 (1). P. 11–25. doi: 10.1007/s00606-004-0257-5.
Pang X., Liu C., Shi L., Liu R., et al. Utility of the trnH–psbA intergenic spacer region and its combinations as plant DNA bar-codes: a meta-analysis. PloS one. 2012. Vol. 7 (11). e48833. doi: 10.1371/journal.pone.0048833.
Rusak I.I., Petrashchuk V.I., Panchuk I.I., Volkov R.A. Molecular organization of 5S rDNA in two Ukrainian populations of Sycamore (Acer pseudoplatanus). Bull. Vavilov Soc. Genet. Breed. Ukr. 2016. Vol. 14 (2). P. 216–220. doi: 10.7124/visnyk.utgis.14.2.691. [in Ukrainian]
Shelyfist A.Y., Tynkevich Y.O., Volkov R.A. Molecular organization of 5S rDNA of Brunfelsia uniflora (Pohl.) D. Don. Bull. Vavilov Soc. Genet. Breed. Ukr. 2018. Vol. 16 (1). P. 61–68. doi: 10.7124/visnyk.utgis.16.1.903 [in Ukrainian]
Tynkevich Y., Bushyla K., Volkov R. Organization of the 5S rDNA intergenic spacer of Quercus rubra L. and its relationship to the Ukrainian Quercus species. Factors Experimental Evol. Organisms. 2020. Vol. 26. P. 125–131. doi: 10.7124/FEEO.v26.1254. [in Ukrainian]
Ishchenko O.O., Bednarska I.O., Panchuk І.І. Application of 5S ribosomal DNA for molecular taxonomy of subtribe Loliinae (Poaceae). Cytol. Genet. 2021 Vol. 55 (1). P. 10–18. doi: 10.3103/S0095452721010096.
Tynkevich Y.O., Kozub L.V., Volkov R.A. Organization and polymorphism of intergenic spiny 5S rDNA spacer of Prunus spi-nosa L. Bull. Vavilov Soc. Genet. Breed. Ukr. 2021. Vol. 19 (1–2). P. 40–46. doi: 10.7124/visnyk.utgis.19.1-2.1439. [in Ukrainian]
Grimm G.W., Schlee M., Komarova N.Y., Volkov R.A., Hemleben V. Low-level taxonomy and intrageneric evolutionary trends in higher plants. From plant taxonomy to evolutionary biology. Nova Acta Leopoldina. 2005. 92 (342). P. 129–145.
Liu Z.W., Gao Y.Z., Zhou J. Molecular authentication of the medicinal species of Ligusticum (Ligustici Rhizoma et Radix,“Gao-ben”) by integrating non-coding internal transcribed spacer 2 (ITS2) and its secondary structure. Front. Plant Sci. 2019 Vol. 10. P. 429. doi: 10.3389/fpls.2019.00429.
Coughlan P., Carolan J.C., Hook I.L., Kilmartin L., Hodkinson T.R. Phylogenetics of Taxus using the internal transcribed spacers of nuclear ribosomal DNA and plastid trnL-F regions. Horticulturae. 2020. Vol. 6 (1). P. 19. doi: 10.3390/horticulturae6010019.