Про природу небілкових рецепторів з концептуальної точки зору. Парадигма для абсцизової кислоти

  • Б. О. Курчій

Анотація

Абсцизова кислота (АБК) – біологічно активна сполука, яка бере участь у різних біохімічних і фізіологічних процесах рослин. Дані про те, як АБК запускає і регулює ці біохімічні і фізіологічні процеси на сьогодні обмежені. Десятки рецепторів описано для сигналізації АБК, проте інформація, чому так багато рецепторів існує і як вони діють на молекулярному рівні, відсутня. Тому, всі сполучені з АБК білки можуть бути гормон-рецепторними комплексами. У цій статті подано інформацію про те, що фізіологічні процеси у рослинах на молекулярному рівні, здійснюючись як елементарні хімічні реакціії (редокс реакції), запускають каскади наступних реакцій, котрі також можуть запускатись різними хімічними і фізичними факторами. Генні ключі (фрагменти полінуклеотидів, небілкові рецептори) і генні замки (стартові фрагменти генів) також описано.

Ключові слова: абсцизова кислота, вільні радикали, рецептори, генні ключі, генні замки.

Посилання

Addicott F.T., Lyon G.L., Ohkuma K., Thiessen W.E., Carns H.R., Smith O.E., Cornforth J.W., Milborrow B.V., Ryback G., Wareing P.F. Abscisic acid: a new name for abscisin II (dormin). Science. 1968. Vol. 159. P. 1493.

Dörffling K. The discovery of abscisic acid: a retrospect. J. Plant Growth Regul. 2015. Vol. 34. P. 795–808.

Milborrow B.V. The identification of (+)-abscisin II [(+)-dormin] in plants and measurement of its concentrations. Planta. 1967. Vol. 76. P. 93–113.

Cutler S.R., Rodriguez P.L., Finkelstein R.R., Abrams S.R. Abscisic acid: Emergence of a core signaling network. Annu. Rev. Plant. Biol. 2010. Vol. 61. P. 651–667. doi: 10.1146/annurev-arplant-042809-112122.

Finkelstein R.R., Gampala S.S., Rock C.D. Abscisic acid signaling in seeds and seedlings. Plant Cell. 2002. Vol. 14 (Suppl.). P. S15–S45. doi: 10.1105/tpc.010441.

Himmelbach A., Yang Y., Grill E. Relay and control of abscisic acid signaling. Curr. Opin. Plant Biol. 2003. Vol. 6. P. 470–479. doi: 10.1016/S1369-5266(03)00090-6.

Trivedi D.K., Gill S.S., Tuteja N. Abscisic acid (ABA): Biosynthesis, regulation, and role in abiotic stress tolerance / Tuteja N., Gill S.S. (Eds). Abiotic Stress Response in Plants, First edition. Weinheim (Germany): Wiley-VCH Verlag GmbH & Co KGaA, 2016. P. 311–322.

Tuteja N. Abscisic acid and abiotic stress signaling. Plant Signal Behav. 2007. Vol. 2. P. 135–138.

Endo A., Okamoto M., Koshiba T. ABA biosynthetic and catabolic pathways / Zhang D-P (ed). Abscisic acid: Metabolism, transport and signaling. Dordrecht: Springer Science+Business Media, 2014. P. 21–45.

Kurchii B.A. Abscisic acid as a final product of antioxidative metabolism of xanthophylls influenced by diquat. Fisiol. Biokhim. Kul.t Rast. 2000. Vol. 32. P. 334–338.

Kurchii B.A. Carotenoids function as quenchers of reactive substances in the photosynthetic machine. 13th Western photosyn-thesis conference (8–11 January, 2004, Asilomar Conference Center, Pacific Grove, California, USA). P. 23.

Luna C.M., Pastori G.M., Driscoll S., Groten K., Bernard S., Foyer C.H. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J. Exp. Bot. 2005. Vol. 56. P. 417–423. doi: 10.1093/jxb/eri039.

Mittler R., Blumwald E. The roles of ROS and ABA in systemic acquired acclimation. Plant Cell. 2015. Vol. 27. P. 64–70. doi: 10.1105/tpc.114.133090.

Zhang F., Wang Y., Yang Y., Wu H., Wang D., Liu J. Involvement of hydrogen peroxide and nitric oxide in salt resistance in the calluses from Populus euphratica. Plant Cell Environ. 2007. Vol. 30. P. 775–785. doi: 10.1111/j.1365-3040.2007.01667.x.

Guan L.M., Zhao J., Scandalios J.G. Cis-elements and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J. 2000. Vol. 22. P. 87–95.

Kwak J.M., Mori I.C., Pei Z.M., Leonhardt N., Torres M.A., Dangl J.L., Bloom R.E., Bodde S., Jones J.D.G., Schroeder J.I. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J. 2003. Vol. 22. P. 2623–2633. doi: 10.1093/emboj/cdg277.

Pornsiriwong W., Estavillo G.M., Chan K.X., Tee E.E. A chloroplast retrograde signal, 3’-phosphoadenosine 5’-phosphate, acts as a secondary messenger in abscisic acid signaling in stomatal closure and germination. eLife. 2017. Vol. 6. P. e23361.

Samarah N.H. Understanding how plants respond to drought stress at the molecular and whole plant levels / Hossain M.A., Wani S.H., Bhattacharjee S., Burritt D.J., Tran L-S.P. (Eds). Drought stress tolerance in plants. Vol. 2. Springer International Publishing Switzerland, 2016. P. 1–38.

Shen Y-Y., Wang X-F., Wu F-Q., Du S-Y., Cao Z., Shang Y., Wang X-L., Peng C-C., Yu X-C., Zhu S-Y., Fan R-C., Xu1 Y H., Zhang D-P. The Mg-chelatase H subunit is an abscisic acid receptor. Nature. 2006. Vol. 443. P. 823–826. doi: 10.1038/nature05176.

Pandey S., Chen J.G., Jones A.M., Assmann S.M. G-protein complex mutants are hypersensitive to abscisic acid regulation of germination and postgermination development. Plant Physiol. 2006. Vol. 141. P. 243–256. doi: 10.1104/pp.106.079038.

Liu X., Yue Y., Li B., Nie Y., Li W., Wu W-H., Ma L. A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science. 2007. Vol. 315. P. 1712–1716. doi: 10.1126/science.1135882.

Ma Y., Szostkiewicz I., Korte A., Moes D., Yang Y., Christmann A., Grill E. Regulators of PP2C phosphatase activity func-tion as abscisic acid sensors. Science. 2009. Vol. 324. P. 1064–1068. doi: 10.1126/science.1172408.

Xue T., Wang D., Zhang S., Ehlting J., Ni F., Jakab S., Zheng C., Zhong Y. Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. BMC Genomics. 2008. Vol. 9. P. 550. doi.org/10.1186/1471-2164-9-550.

Hrabak E.M., Chan C.W.M., Gribskov M., Harper J.F., Choi J.H., Halford N., Kudla J., Luan S., Nimmo H.G., Sussman M.R., Thomas M., Walker-Simmons K., Zhu J-K., Harmon A.C. Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol. 2003. Vol. 132. P. 666–680. doi: 10.1104/pp.102.011999.

Park S-Y., Fung P., Nishimura N., Jensen D.R., Fujii H., Zhao Y., Lumba S., Santiago J., Rodrigues A.,. Chow T-F., Al-fred S.E., Bonetta D., Finkelstein R., Provart N.J., Desveaux D., Rodriguez P., McCourt P., Zhu J-K., Schroeder J.I., Volkman B.F., Cutler S.R. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science. 2009. Vol. 324. P. 1068–1071. doi: 10.1126/science.1173041.

Singh A., Giri J., Kapoor S., Tyagi A.K., Pandey G.K. Protein phosphatase complement in rice: genome-wide identification and transcriptional analysis under abiotic stress conditions and reproductive development. BMC Genomics. 2010. Vol. 11. P. 435.

Guo D., Zhou Y., Li H-L., Zhu J-H., Wang Y., Chen X-T., Peng S-Q. Identification and characterization of the abscisic acid (ABA) receptor gene family and its expression in response to hormones in the rubber tree. Sci. Rep. 2017. Vol. 7. P. 45157. doi: 10.1038/srep45157.

González-Guzmán M., Rodríguez L., Lorenzo-Orts L., Pons C., Sarrión-Perdigones A., Fernández M.A., Peirats-Llobet M., Forment J., Moreno-Alvero M., Cutler S.R., Albert A., Granell A., Rodríguez P.L. Tomato PYR/PYL/RCAR abscisic acid re-ceptors show high expression in root, differential sensitivity to the abscisic acid agonist quinabactin, and the capability to en-hance plant drought resistance. J. Exp. Bot. 2014. Vol. 65. P. 4451–4464. doi: 10.1093/jxb/eru219.

Acharya B.R., Assmann S.M. Hormone interactions in stomatal function. Plant Mol. Biol. 2009. Vol. 69. P. 451–462. doi: 10.1007/s11103-008-9427-0.

Kurchii B.A. A study of the antioxidative activity of abscisic acid / 10th FESPP Congress "From molecular mechanism to the plant: An integrated approach”, September 9–13, 1996, Florence (Italy). Plant Physiol. Biochem. (Special issue). 1996. P. 295.

Vidhyasekaran P. Plant hormone signaling systems in plant innate immunity. Dordrecht: Springer Science+Business Media, 2015. 473 p.

Vatolin S., Weil R.J. Extension of endogenous primers as a tool to detect micro-RNA targets / Colowick S.P., Kaplan N.O. (Eds) Methods in enzymology. 2008. Vol. 449. P. 357–371.

Park D.J. (Ed) PCR Protocols. Third edition. Heidelberg: Springer Science+Business Media, LLC, 2011.

Kurchii B.A. The molecular mechanism of hydrogen bond formation between T–A base pairs within a promoter and a sigma factor. Factors of experimental evolution of organisms. Kiev: Logos Publisher, 2009. Vol. 7. P. 78–82.

Kurchii B.A. The relationship among biological membranes and signaling mediators. II. How do the receptors find and identify their targets? Ukr. Bioorg. Acta. 2010. Vol. 8 (N2). P. 31–35.