Генетичний потенціал бактерій, що виділені із забруднених кадмієм грунтів

  • О. С. Юнгин
  • Е. Ю. Беликова
  • Г. В. Гладка
  • А. Б. Таширев

Анотація

Мета. Визначення таксономічного положення та стійкості виділених із забруднених кадмієм ґрунтів бактеріальних культур до іонів токсичних металів – Cd2+, Cu2+, Ni2+, Co2+, CrO42-. Методи. Культури бактерій виділяли методом граничних розведень і подальшим висівом на агаризовані живильні середовища. Їх таксономічне положення визначали молекулярно-генетичними методами з використанням ресурсів GenBank і BLAST. Стійкість бактерій до іонів токсичних металів встановлювали культивуванням у рідких живильних середовищах за присутності концентраційного градієнта Cd2+, Cu2+, Ni2+, Co2+, CrO42-. Результати. Виділені культури були високостійкими до кадмію. За фенотиповими та молекулярно-генетичними ознаками виділені культури були віднесені до Brevundimonas vesicularis і Cupriavidus gilardii. Їхня стійкість до вказаних металів на порядок перевищує загальновідому. Висновки. Виділені штами перспективні для використання в нових природоохоронних біотехнологіях для очистки металовмісних стічних вод.

Ключові слова: металрезистентність, токсичні метали, таксономічне положення, Cupriavidus gilardii, Brevundimonas vesicularis.

Посилання

Titov A.F., Kaznina N.M., Talanova V.V. Plant resistance to cadmium (Poaceae study): Handbook; Institute of Biology Karelian Research Center of RAS. Petrozavodsk: Karelian Research Center of RAS, 2012. 55 p.

Nies D.H. Microbial heavy-metal resistance. Applied microbiology and biotechnology. 1999. 51 (6). P. 730–750.

Abou-Shanab R.A.I., Van Berkum P., Angle J.S. Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere. 2007. 68 (2). P. 360–367.

Resmi G., Thampi S.G., Chandrasekaran S. Brevundimonas vesicularis: a novel bio-sorbent for removal of lead from wastewater. 2010. P. 281–288.

Silver S. Genes for all metals – a bacterial view of the periodic table. Journal of Industrial Microbiology and Biotechnology. 1998. 20 (1). P. 1–12.

Liu P., Chen X., Huang Q., Chen W. The Role of CzcRS Two-component systems in the heavy metal resistance of Pseudomonas putida X4. International journal of molecular sciences. 2015. 16 (8). P. 17005–17017.

Dokpikul, T., Chaoprasid, P., Saninjuk, K., Sirirakphaisarn, S., Johnrod, J., Nookabkaew, S., Mongkolsuk, S. Regulation of the cobalt/nickel efflux operon dmeRF in Agrobacterium tumefaciens and a link between the iron-sensing regulator RirA and cobalt/nickel resistance. Applied and environmental microbiology. 2016. 82 (15). P. 4732–4742.

Netrusov A.I., Egorova M.A., Zakharchuk L.M., Kolotilova N.N. Workshop on Microbiology. Handbook. Moscow: Academy, 2005. 608 p.

Stackebrandt E., Goebel B.M. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic and Evolutionary Microbiology. 1994. 44 (4). P. 846–849.

Tashyrev O.B., Suslova O.S., Rokitko P.V., Oleksenko H.O., Bondar K.M. Resistance of karst caverns nitrogen-fixing bacteria to extreme factors. Biotechnologia Acta, 2014. 7 (5). P. 43.

Limcharoensuk T., Sooksawat N., Sumarnrote A., Awutpet T., Kruatrachue M., Pokethitiyook P., Auesukaree C. Bioaccumulation and biosorption of Cd2+ and Zn2+ by bacteria isolated from a zinc mine in Thailand. Ecotoxicology and environmental safety. 2015. 122. P. 322–330.

Wistrand-Yuen E., Albrecht L.M., Karlsson C., Sandegren L., Andersson D.I. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. 2014. MBio. 5 (5). e01918-14. doi: 10.1128/mBio.01918-14

Shamim S., Rehman A., Qazi M.H. Cadmium-resistance mechanism in the bacteria Cupriavidus metallidurans CH34 and Pseudomonas putida mt2. Archives of environmental contamination and toxicology. 2014. 67 (2). P. 149–157. doi: 10.1007/s00244-014-0009-7

Zeng X., Wu L., Li W., Zhu S., Wei B., Tang J., Tan Y. Characterization of Strain Cupriavidus sp. ZSK and Its Biosorption of Heavy Metal Ions. Journal of Biobased Materials and Bioenergy. 2017. 11 (2). P. 154–158. doi: 10.1166/jbmb.2017.1649

Mergeay M., Van Houdt R. (Eds.). Metal Response in Cupriavidus metallidurans: Volume I: From Habitats to Genes and Proteins. Springer, 2015.

Chen L., Luo S., Li X., Wan Y., Chen J., Liu C. Interaction of Cd-hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biology and Biochemistry. 2014. 68. P. 300–308. doi: 10.1016/j.soilbio.2013.10.021

Punjee P., Siripornadulsil W., Siripornadulsil S. Reduction of cadmium uptake in rice endophytically colonized with the cadmium-tolerant bacterium Cupriavidus taiwanensis KKU2500-3. Canadian journal of microbiology. 2017. Vol. 64(2). P.131-145. doi: 10.1139/cjm-2017-0198

Tashyrev А.B. Theoretical aspects of microbial interactions with metals. Reduction transformation of metals. Mikrobiol. zhurn. 1994. Vol. 56 (No. 6). P. 76–88.

Singh N., Gadi R. Bioremediation of Ni(II) and Cu(II) from wastewater by the nonliving biomass of Brevundimonas vesicularis. J. Environ. Chem. Ecotoxi. 2012. 4 (8). P. 137–142.

Lima e Silva A.A.D., Carvalho M.A., de Souza S.A., Dias P.M.T., Silva Filho R.G.D., Saramago C.S., Hofer E. Heavy metal tolerance (Cr, Ag and Hg) in bacteria isolated from sewage. Brazilian Journal of Microbiology. 2012. 43 (4). P. 1620–1631. doi: 10.1590/S1517-838220120004000047

Aryal M., Liakopoulou-Kyriakides M. Bioremoval of heavy metals by bacterial biomass. Environmental monitoring and assessment. 2015. 187 (1). P. 4173. doi: doi: 10.1007/s10661-014-4173-z