Transcriptional factor Cat8 is involved in regulation of xylose fermentation in engineered Saccharomyces cerevisiae
Abstract
Aim. The aim of this work is the construction of cat8Δ strain on the base of xylose-fermenting S. cerevisiae strain and evaluation of the xylose fermentation rate. Methods. The CAT8 deletion cassette harboring natNT2 gene flanking with 5’ and 3’ non-coding regions of CAT8 gene has been constructed. After transformation by the cassette the cat8Δ strain was selected on the nourseothricin containing medium. Xylose fermentation experiments of constructed strain was performed in mineral medium supplemented with xylose under oxygen-limited conditions. Results. Xylose-fermenting cat8Δ S. cerevisiae strain has been constructed by homologous recombination of the CAT8 deletion cassette with target sequences in the genome of GS010 strain. The cat8Δ strain possessed increase in ethanol accumulation, ethanol yield, rate of ethanol production and productivity of ethanol synthesis relative to the parental GS010 strain for 9.5, 6, 20 and 12 %, respectively. Conclusions. The mutant of the xylose-fermenting S. cerevisiae strain with knock out of the CAT8 gene coding for transcriptional activator, has been constructed. The cat8Δ mutant showed 9.5 % increase in ethanol production from xylose relative to parental strain.
Keywords: alcoholic fermentation, xylose, S. cerevisiae, Cat8.
References
Ragauskas A.J., Williams C.K., Davison B.H., Britovsek G., Cairney J., Eckert C.A., Frederick W.J. Jr., Hallett J.P., Leak D.J., Liotta C.L., Mielenz J.R., Murphy R., Templer R., Tschaplinski T. The path forward for biofuels and biomaterials. Science. 2006. Vol. 311. P. 484–489. doi: 10.1126/science.1114736.
Hong K.K., Nielsen J. Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cell. Mol. Life Sci. 2012. Vol. 69. P. 2671–2690. doi: 10.1007/s00018-012-0945-1.
Jansen M.L.A., Bracher J.M., Papapetridis I., Verhoeven M.D., de Bruijn H., de Waal P.P., van Maris A.J.A., Klaassen P., Pronk J.T. Saccharomyces cerevisiae strains for second-generation ethanol production: from academic exploration to industrial implementation. FEMS Yeast Res. 2017. Vol. 17 (5). doi: 10.1093/femsyr/fox044.
Moysés D.N., Reis V.C., de Almeida J.R., de Moraes L.M., Torres F.A. Xylose fermentation by Saccharomyces cerevisiae: challenges and prospects. Int. J. Mol. Sci. 2016. Vol. 17 (3). P. 207. doi: 10.3390/ijms17030207.
Matsushika A., Goshima T., Fujii T., Inoue H., Sawayama S., Yano S. Characterization of nonoxidative transaldolase and transketolase enzymes in the pentose phosphate pathway with regard to xylose utilization by recombinant Saccharomyces cerevisiae. Enzyme. Microb. Technol. 2012. Vol. 51. P. 16–25. doi: 10.1016/j.enzmictec.2012.03.008.
Xu H., Kim S., Sorek H., Lee Y., Jeong D., Kim J., Oh E.J., Yun E.J., Wemmer D.E., Kim K.H., Kim S.R., Jin Y.S. PHO13 deletioninduced transcriptional activation prevents sedoheptulose accumulation during xylose metabolism in engineered Saccharomyces cerevisiae. Metab. Eng. 2016. Vol. 34. P. 88–96. doi: 10.1016/j.ymben.2015.12.007.
Karhumaa K., HahnHägerdal B., GorwaGrauslund M.F. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast. 2005. Vol. 22. P. 359–368. doi: 10.1002/yea.1216.
Van Vleet J.H., Jeffries T.W., Olsson L. Deleting the paranitrophenyl phosphatase (pNPPase), PHO13, in recombinant Saccharomyces cerevisiae improves growth and ethanol production on D-xylose. Metab. Eng. 2008. Vol. 10. P. 360–369. doi: 10.1016/j.ymben.2007.12.002.
Bamba T., Hasunuma T., Kondo A. Disruption of PHO13 improves ethanol production via the xylose isomerase pathway. Amb. Express. 2016. Vol. 6. P. 4. doi: 10.1186/s13568-015-0175-7.
Kim S.R., Skerker J.M., Kang W., Lesmana A., Wei N., Arkin A.P., Jin Y.S. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS One. 2013. Vol. 8 (2). P. e57048. doi: 10.1371/journal.pone.0057048.
Kim S.R., Ha S.J., Wei N., Oh E.J., Jin Y.S. Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol. Trends Biotechnol. 2012. Vol. 30. P. 274–282. doi: 10.1016/j.tibtech.2012.01.005.
Farwick A., Bruder S., Schadeweg V., Oreb M., Boles E. Engineering of yeast hexose transporters to transport D-xylose without inhibition by D-glucose. Proc. Natl. Acad. Sci. USA. 2014. Vol. 111. P. 5159–5164. doi: 10.1073/pnas.1323464111.
Haurie V., Perrot M., Mini T., Jenö P., Sagliocco F., Boucherie H. The transcriptional activator Cat8p provides a major contribution to the reprogramming of carbon metabolism during the diauxic shift in Saccharomyces cerevisiae. J. Biol. Chem. 2001. Vol. 276. P. 76–85. doi: 10.1074/jbc.M008752200.
Hedges D., Proft M., Entian K.D. CAT8, a new zinc cluster-encoding gene necessary for derepression of gluconeogenic enzymes in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 1995. Vol. 15. P. 1915–1922. doi: 10.1128/MCB.15.4.1915.
Watanabe D., Hashimoto N., Mizuno M., Zhou Y., Akao T., Shimoi H. Accelerated alcoholic fermentation caused by defective gene expression related to glucose derepression in Saccharomyces cerevisiae. Biosci. Biotechnol. Biochem. 2013. Vol. 77 (11). P. 2255–2262. doi: 10.1271/bbb.130519.
Matsushika A., Goshima T., Hoshino T. Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose. Microb. Cell Fact. 2014. Vol. 13. P. 16. doi: 10.1186/1475-2859-13-16.
Scalcinati G., Otero J.M., Van Vleet J.R., Jeffries T.W., Olsson L., Nielsen J. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Res. 2012. Vol. 12 (5). P. 582–597. doi: 10.1111/j.1567-1364.2012.00808.x.
Ruchala J., Kurylenko O.O., Soontorngun N., Dmytruk K.V., Sibirny A.A. Transcriptional activator Cat8 is involved in regulation of xylose alcoholic fermentation in the thermotolerant yeast Ogataea (Hansenula) polymorpha. Microb. Cell Fact. 2017. Vol. 16. P. 36. doi: 10.1186/s12934-017-0652-6.
Sambrook J., Fritsh E.F., Maniatis T. Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Laboratory Press, 1989. 253 p.
Gietz R.D., Woods R.A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol. 2002. Vol. 350. P. 87–96. doi: org/10.1016/S0076-6879(02)50957-5.
Taxis C., Knop M. System of centromeric, episomal, and integrative vectors based on drug resistance markers for Saccharomyces cerevisiae. Biotechnique. 2006. Vol. 40. P. 73–78. doi: 10.2144/000112040.