Obtaining of transgenic potato plants (Solanum tuberosum L.) that contain antisense sequence of prolindehydrogenase gene

  • O. O. Ovcharenko
  • V. A. Rudas
  • N. L. Shcherbak
  • M. V. Kuchuk

Abstract

Aim. The aim of our work was to obtain transgenic potato plants of Ukrainian varieties with the expression of a double-stranded RNA suppressor of proline dehydrogenase gene. We propose the decrease of proline degradation level and increase of overall proline concentration in obtained transgenic plants. Methods. The Agrobasterium tumefaciens-mediated method of genetic transformation to obtain transgenic plants of potato was used. Internodes of aseptic potato plants were transformed with a binary vector pBi2E containing an inverted repeats of two copies of proline dehydrogenase gene’s first exon and the gene of neomycin phosphotransferase II (nptII). Results. As a result of experiments kanamycin resistant transgenic potato lines of Deseiree, Belarusian 12 and Slavianka varieties were obtained. The transgenic nature of the obtained plants was confirmed by PCR with primers specific to the first exon of proline dehydrogenase and to nptII genes. Conclusions. The optimized conditions of genetic transformation and used agrobacterial strain allow to obtain the transgenic plants of a model potato variety Désirée, as well as varieties Belorussian 12 and Slovyanka which are of practical interest for cultivation in Ukraine.

Keywords: transgenic plants, potatoes (Solanum tuberosum L.), stress resistance, proline.

References

Kolodyazhnaya Ya.S., Titov S.E., Kochetov A.V., Komarova M.L., Romanova A.V., Koval’ V.S., Shumny V.K. Evaluation of salt tolerance in Nicotiana tabacum plants bearing an antisense suppressor of the proline dehydrogenase gene. Russian Journal of Genetics. 2006. Vol. 42, No. 2. P. 212–214.

Kolodyazhna Ya.S., Kutsokon N.K., Levenko B.A., Syutikova O.S., Rakhmetov D.B., Kochetov A.V. Transgenic plants tolerant to abiotic stresses. Cytology and Genetics. 2009. Vol. 43, No. 2, P. 132-149. doi: 10.3103/S0095452709020108

Kochetov A.V., Shumny V.K. Transgenic plants as genetic models for studying functions of plant genes. Russian Journal of Genetics: Applied Research. 2017. Vol. 7, No. 4. P. 421–427. doi: 10.1134/S207905971704005.

Kuznetsov V.V., Shevyakova N.I. Proline under stress: biological role, metabolism, and regulation. Russian Journal of Plant Physiology. 1999. Vol. 46, № 2. P. 321–336.

Duchovskis P., Yuknis R., Brazaitite A., Zukauskaite I. Plant Response to Integrated Impact of Natural and Anthropogenic Stress Factors. Russian Journal of Plant Physiology. 2003. Vol. 50, No. 2. P. 147–154. Translated from Fiziologiya Rastenii. 2003. Vol. 50, No. 2. P. 165–173.

Nanjo T., Kobayashi M., Yoshiba Y. et al. Antisence suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett. 1999. 461. P. 205–210. doi: 10.1016/S0014–5793(99)01451–9.

Kolodyazhnaya Ya.S., Titov S.E., Kochetov A.V., Trifonova E.A., Romanova A.V., Komarova M.L., Koval V.S., Shumny V.K. Tobacco transformants expressing antisense sequence of proline dehydrogenase gene possess tolerance to heavy metals. Russian Journal of Genetics. 2007. Vol. 43, No. 7. P. 825–828.

Tishchenko O.M., Komisarenko A.G., Mykhalska S.I., Sergeeva L.E., Adamenko N.I., Morgun B.V., Kochetov A.V. Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.) in vitro and in planta using Lba4404 strain harboring binary vector pBi2E with dsRNA-suppressor of proline dehydrogenase gene. Cytol. Genet. 2014. Vol. 48. P. 218–226. doi: 10.3103/S0095452714040094.

Voronova S.S., Goncharuk A.M., Bavol A.V., Dubrovnay O.V. Genetic transformation of bread wheat using vector constructs containing the genes of proline metabolism. Visn of Ukr Society of geneticists and breeders. 2015. Vol. 13, No. 1. P. 28–33.

Moiseeva Y.M., Velikov V.A., Volokhina I.V., Gusev Yu.S., Yakovleva O.S., Chumakov M.I. Agrobacterium-mediated transformation of maize with antisense suppression of the proline dehydrogenase gene by an in planta method. British Biotechnol. J. 2014. Vol. 4, No. 2. P. 116–125. doi: 10.9734/BBJ/2014/6504

Mykhalska S.I., Sergeeva L.E., Matveyeva A.Yu., Kobernik N.I., Kochetov A.V., Tishchenko O.M., Morgun V.V. The elevation of free proline content in osmotolerant transgenic corn plants with dsRNA suppressor of prolinedehydrogenase gene. Phisiol. Rasteniy i Genetica. 2014. Vol. 46, No. 6. P. 482–489. URL: http://nbuv.gov.ua/UJRN/FBKR_2014_45_6_5 (Last accessed: 1.03.2018).

Sergeeva L.E., Dykun M.O., Bronnikova L.I. Reactions of corn cell cultures during hard osmotic stresses action. Factors in experimental evolution of organisms. 2017. Vol. 2. P. 178–182.

Murashige T., Skoog F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plantarum. 1962. Vol. 15, No. 3, P. 473–497. doi: 10.1111/j.1399–3054.1962.tb08052.

Doyle J.J., Doyle J.L. Isolation of plant DNA from fresh tissue. Focus. 1990. Vol. 12. P. 13–15.

Kikuchi A., Huynh H.D., Endo T., Watanabe K. Review of recent transgenic studies on abiotic stress tolerance and future molecular breeding in potato. Breeding science. 2015. Vol. 65. P. 85–102. doi: org/10.1270/jsbbs.65.85.

Han E.-H., Goo Y.-M., Lee・M.-K.,・Lee S.-W. An efficient transformation method for a potato (Solanum tuberosum L. var. Atlantic). J. Plant Biotechnol. 2015. Vol. 42. P. 77–82. doi: 10.5010/JPB.2015.42.2.77.