Са2+- and Са2+-calmodulin-dependent protein kinases as potential regulators of microtubule structure and functions

  • D. O. Novozhylov Institute of Food Biotechnology and Genomics NAS of Ukraine, Ukraine, 04123, Кyiv, Оsipovskogo str., 2A
  • P. A. Karpov Institute of Food Biotechnology and Genomics NAS of Ukraine, Ukraine, 04123, Кyiv, Оsipovskogo str., 2A
  • A. V. Raievskyi Institute of Food Biotechnology and Genomics NAS of Ukraine, Ukraine, 04123, Кyiv, Оsipovskogo str., 2A
  • S. P. Ozheredov Institute of Food Biotechnology and Genomics NAS of Ukraine, Ukraine, 04123, Кyiv, Оsipovskogo str., 2A
  • Ya. B. Blume Institute of Food Biotechnology and Genomics NAS of Ukraine, Ukraine, 04123, Кyiv, Оsipovskogo str., 2A

Abstract

Aim. Evaluate involvement of calcium/calmodulin-dependent protein kinases in regulation of plant microtubules using bioinformatic and structural biological methods. Methods. Sequences of tubulins isoforms was taken from UniProtKB. Profile prediction of phosphorylation sites was done using KinasePhos 2.0 service. Locating of potential phosphorylation sites was conducted on 3D-models of A. thaliana γ-tubulin complex and tubulin dimer, build using template X-ray RCSB Protein Data Bank structures; Modeller 9v8, I-Tasser, EasyModeller, HADDOCK, GROMACS 4.5.3, MolProbity, QMEAN software and visualized through PyMol 1.5 and UCSF Chimera 1.8. Results. It was predicted existence of potential phosphorylation sites matched profiles of calcium/calmodulin-dependent protein kinase 2 (CaMK2) in all Arabidopsis isotypes of β- and γ-tubulin: Ser32, Ser259, Ser321, Ser376 in both isotypes of γ-tubulin (TBG1 and TBG2), and Thr312 conserved in all β-tubulins (TBB1-TBB9). Conclusions. Considering location of specified amino acid residues, we assume that calcium/calmodulin-dependent protein kinases may be involved in regulation of plant microtubules. We assume that phosphorylation in these positions may have a significant impact on the microtubule dynamics, formation of α-/β-tubulin dimer and primary microtubule nucleation centers in plants.
Keywords: plant microtubules, tubulin, γTuSC complexes, phosphorylation, calcium/calmodulin-dependent protein kinases, protein kinase CaMK2, potential sites.

References

Wloga D., Gaertig J. Post-translational modifications of microtubules. J. Cell Sci. 2010. V. 123. P. 3447-3455. doi: 10.1242/jcs.063727

Janke C., Kneussel M. Tubulin post-translational modifications: encoding functions on the neuronal microtubule cytoskeleton. Trends Neurosci. 2010. V. 33. P. 362-372. doi: 10.1016/j.tins.2010.05.001

Fletcher D.A., Mullins R.D. Cell mechanics and the cytoskeleton. Nature. 2010. V. 463(7280). P. 485-492. doi: 10.1038/nature08908

Hammond J., Cai D., Verhey K.J. Tubulin modifications and their cellular functions. Curr. Opin. Cell Biol. 2008. V. 20. P. 71-76. doi: 10.1016/j.ceb.2007.11.010

Yemets А.І., Lloyd С., Bulmer Ya.B. Plant tubulin phosphorylation and its role in cell cycle progression. The Plant Cytoskeleton: a Key Tool for Agro-Biotechnology / Ed. Bulmer Ya.B. et al. Netherlands: Springer, 2008. P. 145-159.

Karpov P.A., Nadezhdina E.S., Yemets A.I., Matusov V.G., Nyporko A.Yu., Shashina N.Yu., Blume Ya.B. Bioinformatic search of plant microtubule- and cell cycle related serine-threonine protein kinases. BMC Genomics. 2010. V. 11(1). P. 14. doi: 10.1186/1471-2164-11-S1-S14

Paganelli L., Caillaud M.C., Quentin M., Damiani I., Govetto B., Lecomte P., Karpov P.A., Abad P., Chabouté M.E., Favery B. Three BUB1 and BUBR1/MAD3-related spindle assembly checkpoint proteins are required for accurate mitosis in Arabidopsis. New Phytol. 2015. V. 205(1). P. 202-215. doi: 10.1111/nph.13073

Harmon A.C. Calcium-regulated protein kinases of plants. Gravitat. Space Biol. Bulletin. 2003. V. 16(2). P. 83-90. doi: 10.3363/prb1992.16.0_83

Hrabak E.M., Chan C.W., Gribskov M., Harper J.F., Choi J.H., Halford N., Kudla J., Luan S., Nimmo H.G., Sussman M.R., Thomas M., Walker-Simmons K., Zhu J.K., Harmon A.C. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol. 2003. V. 132. P. 666-680. doi: 10.1104/pp.102.011999

Jaworski K., Szmidt-Jaworska A., Kopcewicz J. Plant protein kinases stimulated by calcium. Postepy Biochem. 2005. V. 51(2). P. 188-197.

Baratier J., Peris L., Brocard J., Gory-Fauré S., Dufour F., Bosc C., Fourest-Lieuvin A., Blanchoin L., Salin P., Job D., Andrieux A. Phosphorylation of microtubule-associated protein STOP by calmodulin kinase I. J. Biol. Chem. 2006. V. 281(28). P. 19561-19569. doi: 10.1074/jbc.M509602200

Wandosell F., Serrano L., Hernández M.A., Avila J. Phosphorylation of tubulin by a calmodulin-dependent protein kinase. J. Biol. Chem. 1986. V. 261(22). P. 10332-10339.

Holmfeldt P., Zhang X., Stenmark S., Walczak C.E., Gullberg M. CaMKIIgamma-mediated inactivation of the Kin I kinesin MCAK is essential for bipolar spindle formation. EMBO J. 2005. V. 24(6). P. 1255-1266. doi: 10.1038/sj.emboj.7600601

Hoffman L., Farley M.M., Waxham M.N. Calcium-calmodulin-dependent protein kinase II isoforms differentially impact the dynamics and structure of the actin cytoskeleton. Biochemistry. 2013. V. 52(7). P. 1198-1207. doi: 10.1021/bi3016586

Zhao J.W., Gao Z.L., Ji Q.Y., Wang H., Zhang H.Y., Yang Y.D., Xing F.J., Meng L.J., Wang Y. Regulation of cofilin activity by CaMKII and calcineurin. Am. J. Med. Sci. 2012. V. 344(6). P. 462-472. doi: 10.1097/MAJ.0b013e318244745b

Robison A.J., Bass M.A., Jiao Y., MacMillan L.B., Carmody L.C., Bartlett R.K., Colbran R.J. Multivalent interactions of calcium/calmodulin-dependent protein kinase II with the postsynaptic density proteins NR2B, densin-180, and alpha-actinin-2. J. Biol. Chem. 2005. V. 280(42). P. 35329-35336. doi: 10.1074/jbc.M502191200

Shen K., Teruel M.N., Subramanian K., Meyer T. CaMKIIβ functions as an F-actin targeting module that localizes CaMKIIα/β heterooligomers to dendritic spines. Neuron. 1998. V. 21(3). P. 593-606. doi: 10.1016/S0896-6273(00)80569-3

Easley C.A., Faison M.O., Kirsch T.L., Lee J.A., Seward M.E., Tombes R.M. Laminin activates CaMK-II to stabilize nascent embryonic axons. Brain Res. 2006. V. 1092(1). P. 59-68. doi: 10.1016/j.brainres.2006.03.099

Novozhylov D.O., Karpov P.A., Blium Ya.B. Bioinformatsiynyy poshuk Sa2+- ta kal'modulin-zalezhnykh proteinkinaz, potentsiyno pov'iazanykh z rehuliatsiieiu roslynnoho tsytoskeletu. Tsitologiia i genetika. 2017. V. 51(4). P. 3-12. [in Ukrainian]

The UniProt Consortium. The Universal Protein Resource (UniProt). Nucl. Acids Res. 2008. V. 36. P. 190-195. doi: 10.1093/nar/gkm895

Huang H.D., Lee T.Y., Tseng S.W., Horng J.T. KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites. Nucl. Acids Res. 2005. V. 33. P. 226-229. doi: 10.1093/nar/gki471

Eswar N., Webb B., Marti-Renom M.A., Madhusudhan M.S., Eramian D., Shen M., Pieper U., Sali A. Comparative protein structure modeling with MODELLER. Curr. Prot. Bioinform. 2006. Sup. 15: 5.6.1-5.6.30. doi: 10.1002/0471250953.bi0506s15

Yang J., Yan R., Roy A., Xu D., Poisson J., Zhang Y. The I-TASSER Suite: Protein structure and function prediction. Nat. Meth. 2015. V. 12. P. 7-8. doi: 10.1038/nmeth.3213

Kuntal B.K., Aparoy P., Reddanna P. EasyModeller: A graphical interface to MODELLER. BMC Res. Not. 2010. V. 3(226). doi: 10.1186/1756-0500-3-226

Hildebrand P.W., Goede A., Bauer R.A., Gruening B., Ismer J., Michalsky E., Preissner R. SuperLooper - a prediction server for the modeling of loops in globular and membrane proteins. Nucl. Acids Res. 2009. V. 37. P.571-574. doi: 10.1093/nar/gkp338

Dominguez C., Boelens R., Bonvin A.M.J.J. HADDOCK: a protein-protein docking approach based on biochemical and/or biophysical information. J. Am. Chem. Soc. 2003. V. 125(7). P. 1731-1737. doi: 10.1021/ja026939x

Kollman J.M., Merdes A., Mourey L., Agard D.A. Microtubule nucleation by γ-tubulin complexes. Nature Rev. Mol. Cell Biol. 2011. V. 12. P. 709-721. doi: 10.1038/nrm3209

Kollman J.M., Zelter A., Muller E.G., Fox B., Rice L.M., Davis T.N., Agard D.A. The structure of the gamma-tubulin small complex: implications of its architecture and flexibility for microtubule nucleation. Mol. Biol. Cell. 2008. V. 19(1). P. 207-215. doi: 10.1091/mbc.e07-09-0879

Kollman J.M., Greenberg C.H., Li S., Moritz M., Zelter A., Fong K.K., Fernandez J.-J., Sali A., Kilmartin J., Davis T.N., Agard D.A. Ring closure activates yeast γTuRC for species-specific microtubule nucleation. Nat. Struct. & Mol. Biol. 2015. V. 22. P. 132-137. doi: 10.1038/nsmb.2953

Stacklies W., Seifert C., Graeter F. Implementation of force distribution analysis for molecular dynamics simulations. BMC Bioinform. 2011. V. 12(101). doi: 10.1186/1471-2105-12-101

Nei M., Kumar S. Molecular evolution and phylogenetics. New York: Oxford University Press, 2000. 352 p.

Davis I.W., Leaver-Fay A., Chen V.B., Block J.N., Kapral G.J., Wang X., Murray L.W., Arendall W.B. III, Snoeyink J., Richardson J.S., Richardson D.C. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucl. Ac. Res. 2007. V. 35. P.375-383. doi: 10.1093/nar/gkm216

Benkert P., Künzli M., Schwede T. QMEAN server for protein model quality estimation. Nucl. Acids Res. 2009. V. 37. P.510-514. doi: 10.1093/nar/gkp322

Karpov P.A., Brytsun V.M., Rayevsky A.V., Demchuk O.M., Pydiura N.O., Ozheredov S.P., Samofalova D.A., Spivak S.I., Yemets A.I., Kalchenko V.I., Blume Ya.B. High-throughput screening of new antimitotic compounds based on potential of virtual organization CSLabGrid. Sci. Innov. 2015. V. 11(1). P. 85-93. doi: 10.15407/scine11.01.085

Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera - a visualization system for exploratory research and analysis. J. Comput. Chem. 2004. V. 25(13). P. 1605-1612. doi: 10.1002/jcc.20084