High throughput screening of tubulin inhibitors from parasitic fungi

  • P. A. Karpov Institute of Food Biotechnology and Genomics of Natl. Acad. Sci. of Ukraine, Ukraine, 04123, Kyiv, Osipovs'kogo str., 2А
  • O. M. Demchuk Institute of Food Biotechnology and Genomics of Natl. Acad. Sci. of Ukraine, Ukraine, 04123, Kyiv, Osipovs'kogo str., 2А
  • S. P. Ozheriedov Institute of Food Biotechnology and Genomics of Natl. Acad. Sci. of Ukraine, Ukraine, 04123, Kyiv, Osipovs'kogo str., 2А
  • S. I. Spivak Institute of Food Biotechnology and Genomics of Natl. Acad. Sci. of Ukraine, Ukraine, 04123, Kyiv, Osipovs'kogo str., 2А
  • O. V. Raievskyi Institute of Food Biotechnology and Genomics of Natl. Acad. Sci. of Ukraine, Ukraine, 04123, Kyiv, Osipovs'kogo str., 2А
  • D. O. Samofalova Institute of Food Biotechnology and Genomics of Natl. Acad. Sci. of Ukraine, Ukraine, 04123, Kyiv, Osipovs'kogo str., 2А
  • Ya. B. Blume Institute of Food Biotechnology and Genomics of Natl. Acad. Sci. of Ukraine, Ukraine, 04123, Kyiv, Osipovs'kogo str., 2А

Abstract

Aim. Implementation of 3D-modeling, molecular dynamics, high-throughput screening and molecular docking for search of new inhibitors of parasitic fungi tubulin. Methods. Protein structures were constructed using I-TASSER server and optimized by Gromacs. Ligands library was prepared in Mopac7 program and screened using UCSF Dock 6. Best ligands were docked in CCDC Gold. Results. It was reconstructed spatial molecular structure for 93 α-, 95 β- and 78 γ-tubulins from 76 species of pathogenic fungi genus: Microsporum, Arthroderma, Histoplasma, Blastomyces, Emmonsia, Uncinocarpus, Coccidioides, Paracoccidioides, Aspergillus, Botrytis cinerea, Sclerotinia, Rhynchosporium, Marssonina, Scedosporium, Fusarium, Gibberella, Candida, Ceraceosorus, Malassezia, Anthracocystis, Melanopsichium, Sporisorium, Ustilago, Cryptococcus, Trichosporon, Mucor, Rhizopus and Lichtheimia. Libraries of 3D-models of parasitic fungi tubulins and perspective ligands were created. Based on results of high-throughput virtual screening, 200 perspective agents were selected from more than 7 million compounds. After resulting molecular docking in CCDC GOLD, we specify 19 leading compounds. We propose these compounds as potent tubulin inhibitors and recommend them for in vitro testing as new fungicides. Conclusions. Based on results of high-throughput virtual screening in Grid, 19 new imidazole inhibitors of parasitic fungi tubulin were selected.
Keywords: microtubule, tubulins, fungicides, imidazole derivatives, virtual screening, molecular docking.

References

Vignaud T., Blanchoin L., Théry M. Directed cytoskeleton self-organization. Trends Cell Biol. 2012. V. 22 (12). P. 671-682. doi: 10.1016/j.tcb.2012.08.012

Eren E.C., Gautam N., Dixit R. Computer simulation and mathematical models of the noncentrosomal plant cortical microtubule cytoskeleton. Cytoskeleton. 2012. V. 69 (3). P. 144-154. doi: 10.1002/cm.21009

Sui M., Zhang H., Di X., Chang J., Shen Y., Fan W. G2 checkpoint abrogator abates the antagonistic interaction between antimicrotubule drugs and radiation therapy. Radiother. Oncol. 2012. V. 104 (2). P. 243-248. doi: 10.1016/j.radonc.2012.04.021

Zhao Y., Wu F., Wang Y., Chen S., Han G., Liu M., Jin D. Inhibitory action of chamaejasmin A against human HEP-2 epithelial cells: effect on tubulin protein. Mol. Biol. Rep. 2012. V. 39 (12). Р. 11105-11112. doi: 10.1007/s11033-012-2016-y

The UniProt Consortium. UniProt: a hub for protein information. Nucl. Acids Res. 2015. V. 43 (D1). P. D204-D212. doi: 10.1093/nar/gku989

Roy A., Kucukural A., Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 2010. V. 5 (4). P. 725-738. doi: 10.1038/nprot.2010.5

Pronk S., Páll S., Schulz R., Larsson P., Bjelkmar P., Apostolov R., Shirts M.R., Smith J.C., Kasson P.M., van der Spoel D., Hess B., Lindahl E. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinform. 2013. V. 29 (7). P. 845-854. doi: 10.1093/bioinformatics/btt055

Allen W.J., Balius T.E., Mukherjee S., Brozell S.R., Moustakas D.T., Lang P.T., Case D.A., Kuntz I.D., Rizzo R.C. DOCK 6: impact of new features and current docking performance. J. Comput. Chem. 2015. V. 36. P. 1132-1156. doi: 10.1002/jcc.23905

Jones G., Willett P., Glen R.C., Leach A.R., Taylor R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997. V. 267. P. 727-748. doi: 10.1006/jmbi.1996.0897

Löwe J., Li H., Downing K.H., Nogales E. Refined structure of alpha beta-tubulin at 3.5 A resolution. J. Mol. Biol. 2001. V. 313. P. 1045-1057 doi: 10.1006/jmbi.2001.5077