The fatty acids content of calli cultures from different explant types of amarantus plants

  • V. P. Zhuk Institute of Food Biotechnology and Genomics, NAS of Ukraine, Ukraine, 04123, Kyiv-143, Osipovskogo str., 2a
  • L. O. Sakhno Institute of Food Biotechnology and Genomics, NAS of Ukraine, Ukraine, 04123, Kyiv-143, Osipovskogo str., 2a
  • M. A. Kharkhota D.K. Zabolotny Institute of Microbiology and Virology NAS of Ukraine, Ukraine, 03680, Kyiv, Akademika Zabolotnoho str., 154
  • S. V. Isaienkov Institute of Food Biotechnology and Genomics, NAS of Ukraine, Ukraine, 04123, Kyiv-143, Osipovskogo str., 2a

Abstract

Aim. The aim of our study was selection of optimal conditions for the initiation of Amaranthus L. aseptic callus in vitro culture from different types of explants and estimation of fatty acid composition in these types of cell cultures. Methods. In vitro culture using leaf disks and internodes as explants. Inert gas chromatography. Results. The optimized Gamborg medium for callus induction was designed (sucrose 25 g/1L; 2.4-D 0.5 mg/L; NАА 1 mg/L). The кіnetin in concentration 0.5 mg/L for internodes and for leaf discs explants were added. The fatty acid profiles of calli cultures from the different types of plant explants were analyzed The highest level of Omega-3 fatty acid were detected in cell cultures from internodes and leaf discs of cultivar Helios. Conclusions. Our optimized protocol for Amaranthus callus initiation could be used for further studies of the synthesis and accumulation of biologically active metabolites in Amaranthus tissue culture. The fatty acid composition of calli cultures depend from explant type as well as from plant cultivar.

Keywords: Amaranthus, callus, in vitro culture, fatty acid composition

References

Rastogi A., Shukla S. Amaranth: A New Millennium Crop of Nutraceutical Values Critical Revie wsin. Food Scien. and Nutr. 2013. V. 53. P. 109-125. doi: 10.1080/10408398.2010.517876

Chong M.F., Lockyer S., Saunders C.J., Lovegrove J.A. Long chain n-3 PUFA-rich meal reduced postprandial measures of arterial stiffness. Clin. Nutr. 2010. V. 29. P. 678-681. doi: 10.1016/j.clnu.2010.02.001

Shukla S. Mineral Profile and Variability in Vegetable Amaranth (Amaranthus tricolor). Plant Foods for Hum. Nutr. 2006. V. 61 (1). P. 23-28. doi: 10.1007/s11130-006-0004-x

Gupta S., Prakash J. Studies on Indian green leafy vegetables for their antioxidant activity. Plant Foods Hum. Nutr. 2009. V. 64. P. 39-45. doi: 10.1007/s11130-008-0096-6

Murugan S.B., Deepika R., Reshma A., Ashwini M., Sathishkumar R. Assessment of free radical scavenging activities of leaves and stem fractions of green leafy vegetables. Afr. J. Pharm. Pharmacol. 2014. V. 8. P. 1138-1145.

Murugan S.B., Deepika R., Reshma A., Balamurugan S., Sathishkumar R. Antioxidant capacities of Amaranthus tristis and Alternanthera sessilis: A comparative study.. J. Med. Plants. Res. 2013. V. 7. P. 2230-2235. doi: 10.5897/JMPR13.2567

Carrero J.J., Baro L., Fonolla J., González-Santiago M., Martínez-Férez A., Castillo R., Jiménez J., Boza J.J., López-Huertas E. Cardiovascular effects of milk enriched with n-3 polyunsaturated fatty acids, oleic acid folic acid and vitamins E, B6 and B12 in volunteers with mild hyperlipidaemia. Nutr. 2004. V. 20. P. 521-527. doi: 10.1016/j.nut.2004.03.017

Toader M., Roman G.V. Experimental results regarding morphological, biological and yield quality of Amaranthus hypocondriacus L. Species under the Central part of Romanian Plain conditions. Research J. of Agric. Science. nr. 2009. V. 41 (1). P. 54-57.

Finnegan Y.E., Minihane A.M., Leigh-Firbank E.C., Kew S., Meijer G.W., Muggli R., Calder P.C., Williams C.M. Plant- and marine-derived n-3 polyunsaturated fatty acids have differential effects on fasting and postprandial blood lipid concentrations and on the susceptibility of LDL to oxidative modification in moderately hyperlipidemic subjects. Am. J. Clin. Nutr. 2003. V. 77. P. 783-795. doi: 10.1093/ajcn/77.4.783

Milte C.M., Coates A.M., Buckley J.D., Hill A.M., Howe P.R. Dose dependent effects of docosahexaenoic acid-rich fish oil on erythrocyte docosahexaenoic acid and blood lipid levels. Br. J. Nutr. 2008. V. 99. P. 1083-1088. doi: 10.1017/S000711450785344X

Pawlosky R.J., Hibbeln J.R., Novotny J.A., Salem N.Jr. Physiological compartmental analysis of alpha-linolenic acid metabolism in adult humans. J. Lipid. Res. 2001. V. 42. P. 1257-1265.

Taylor C.G., Noto A.D., Stringer D.M., Froese S., Malcolmson L. Dietary milled flaxseed and flaxseed oil improve N-3 fatty acid status and do not affect glycemic control in individuals with well-controlled type 2 diabetes. J. Am. Coll. Nutr. 2010. V. 29. P. 72-80. doi: 10.1080/07315724.2010.10719819

Teres S., Barcelo-Coblijn G., Benet M., Alvarez R., Bressani R., Halver J.E., Escriba P.V. Oleic acid content is responsible for the reduction in blood pressure induced by olive oil. Proceedings of the Nation. Academy of Scien. 2008. V. 105 (37). P. 13811-13816. doi: 10.1073/pnas.0807500105

Smedman A.E.M., Gustafsson I.B., Berglund L.G.T., Vessby B.O. Pentadecanoic acid in serum as a marker for intake of milk fat: Relations between intake of milk fat and metabolic risk factors. Americ. J. of Clinic. Nutr. 1999. V. 69 (1). P. 22-29. doi: 10.1093/ajcn/69.1.22