Human MGMT expression is regulated by estrogen in vitro
Abstract
Aim. The repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) plays a dual role. It protects cell against DNA’s alkylation and cell death. But in the case of cancer treatment it provides the cancer cells’ resistance to alkylating chemotherapy. So it is important to regulate MGMT activity to inhibit it in cancer cells and to activate in normal cells. To treat some type of cancers used combination of the chemotherapy and the hormone therapy. So, we tried to investigate the role of estrogen on the MGMT transcription. Methods. We performed western-blot and RT-qPCR to analyse the human MGMT expression on mRNA and protein level. Results. We observe MGMT upregulation on both mRNA and protein level at the 0.5–1 nM estrogen concentration relative to untreated control. Conclusions. Estrogen is one of the potential hormonal MGMT regulators.
Keywords: O6-methylguanine-DNA methyltransferase (MGMT), estrogen, steroid hormones.
References
Verbeek B., Southgate T.D., Gilham D.E., Margison G.P. O6-Methylguanine-DNA methyltransferase inactivation and chemotherapy. Br Med Bull. 2008. No. 85. Р. 17–33. doi: 10.1093/bmb/ldm036.
Nakazy MOZ Ukrainy No 554 vid 17.09.2007, No 247 vid 29.04.2011, No 514 vid 05.09.2008, No 252 vid 08.04.2014. [in Ukrainian]
Schiavon G., Smith I.E. Status of adjuvant endocrine therapy for breast cancer. Breast Cancer Res. 2014. V. 16. No. 2. P. 206–222. doi: 10.1186/bcr3636
Heldring N., Pike A., Andersson S., Matthews J., Cheng G., Hartman J., Tujague M., Strtsm A., Treuter E., Warner M., Gustafsson J.A. Estrogen receptors: how do they signal and what are their targets. Physiol. Rev. 2007. V. 87, No. 3. P. 905–931. doi: 10.1152/physrev.00026.2006.
Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987. V. 162, No. 1. P. 156–159. doi: 10.1006/abio.1987.9999.
Green S.J., Michael R. Molecular cloning. NY. Cold Spring Harbor Laboratory Press, 2012. 1885 p.
Andersen C.L., Jensen J.L., Ørntoft T.F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004. V. 64, No. 15. P. 5245–5250. doi: 10.1158/0008-5472.CAN-04-0496.
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002. V. 3, No. 7. P. RESEARCH0034. doi: 10.1186/gb-2002-3-7-research0034
Biogazelle: Deploying the transcriptome. Available from: https://www.biogazelle.com/qbaseplus.
Roseff S.J., Bangah M.L., Kettel L.M., Vale W., Rivier J., Burger H.G., Yen S.S. Dynamic changes in circulating inhibin levels during the luteal-follicular transition of the human menstrual cycle. J. Clin. Endocrinol. Metab. 1989. V. 69, No. 5. P. 1033–1039. doi: 10.1210/jcem-69-5-1033.
Hammond G.L. Diverse roles for sex hormone-binding globulin in reproduction. Biol. Reprod. 2011. V. 85, No. 3. P. 431–441. doi: 10.1095/biolreprod.111.092593.
Nidoieva Z.M., Samoylenko I.O., Pidpala O.V., Lukash L.L., Yatsyshyna A.P. Bioinformatychnyy poshuk elementiv vidhuku na hormony u promotori hena O6-metylhuanin-DNK metyltransferazy (MGMT). Faktory eksperymental'noi evoliutsii orhanizmiv. K.: Lohos, 2015. V. 17. P. 74–78. [in Ukrainian]
Nakajima Y., Osakabe A., Waku T., Suzuki T., Akaogi K., Fujimura T., Homma Y., Inoue S., Yanagisawa J. Estrogen exhibits a biphasic effect on prostate tumor growth through the ERβ-KLF5 pathway. Ml. Cell. Biol. 2015. V. 19, No. 36. P. 144–156. doi: 10.1128/MCB.00625-15.
Mak P., Li J., Samanta S., Mercurio A. M. ERβ regulation of NF-kB activation in prostate cancer is mediated by HIF-1. Oncotarget. 2015. V. 6, No. 37. P. 40247–40254. doi: 10.18632/oncotarget.5377.
Chang C., McDonnell D.P. Molecular pathways: the metabolic regulator estrogen-related receptor α as a therapeutic target in cancer. Clin. Cancer Res. 2012. V. 18, No. 22. P. 6089–6095. doi: 10.1158/1078-0432.CCR-11-3221.
Mungenast F., Thalhammer T. Estrogen biosynthesis and action in ovarian cancer. Front. Endocrinol. (Lausanne). 2014. No. 5. P. 192. doi: 10.3389/fendo.2014.00192.
Faus H., Haendler B. Post-translational modifications of steroid receptors. Biomed. Pharmacother. 2006. V. 60, No. 9. P. 520–528. doi: 10.1016/j.biopha.2006.07.082.
Santoro N., Worsley R., Miller K.K., Parish S.J., Davis S.R. Role of Estrogens and Estrogen-Like Compounds in Female Sexual Function and Dysfunction. J. Sex. Med. 2016. V. 13, No. 3. P. 305–316. doi: 10.1016/j.jsxm.2015.11.015.
Cavalieri E.L., Rogan E.G. Depurinating estrogen-DNA adducts in the etiology and prevention of breast and other human cancers. Future Oncol. 2010. V. 6, No. 1. P. 75–91. doi: 10.2217/fon.09.137.
Santen R., Cavalieri E., Rogan E., Russo J., Guttenplan J., Ingle J., Yue W. Estrogen mediation of breast tumor formation involves estrogen receptor-dependent, as well as independent, genotoxic effects. Ann. N. Y. Acad. Sci. 2009. No. 1155. P. 132–140. doi: 10.1111/j.1749-6632.2008.03685.x.
Vrtačnik P., Ostanek B., Mencej-Bedrač S., Marc J. The many faces of estrogen signaling. Biochem. medica. 2014. V. 24, No. 3. P. 329–342. doi: 10.11613/BM.2014.035.
Filardo E.J., Quinn J.A., Frackelton A.R., Bland K.I. Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Mol. Endocrinol. 2002. V. 16, No. 1. P. 70–84. doi: 10.1210/mend.16.1.0758.
Filardo E.J., Quinn J.A., Bland K.I., Frackelton A.R. Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol. Endocrinol. 2000. V. 14, No. 10. P. 1649–1660. doi: 10.1210/mend.14.10.0532.