B. subtilis mutants with the human Alu-repeat possess increased sensitivity to the cytostatic action of lektins

  • I. S. Karpova Institute of Molecular Biology and Genetics of Natl. Acad. of Sci. of Ukraine, Ukraine, 03680, Kyiv, Akad. Zabolotnogo str., 150
  • V. V. Lylo Institute of Molecular Biology and Genetics of Natl. Acad. of Sci. of Ukraine, Ukraine, 03680, Kyiv, Akad. Zabolotnogo str., 150
  • O. S. Bilolipetska Institute of Molecular Biology and Genetics of Natl. Acad. of Sci. of Ukraine, Ukraine, 03680, Kyiv, Akad. Zabolotnogo str., 150

Abstract

Aim. Unique B. subtilis mutants with altered cytokinesis that were supposed to be a result of human Alu-repeat insertions have been investigated to determine possible alterations of the genome, the sensitivity to bacteriostatic action of lectins and search for potential targets of such action. Methods. Rep-PCR genomic fingerprinting with use of PCR markers REP, ERIC and BOX was applied. Commercial lectins with different structures: PHA-Е, PHA-L SNA, and WGA (LECTINOTEST, Ukraine) were used. Search for lectin’s targets was performed by inhibitory analysis using diffuse agar test. Results. Alu-repeat insertions did not affect significantly the amplification profile of B. subtilis own noncoding sequences – REP, ERIC and BOX. Alu-integrant mutants demonstrated the increased sensitivity to the cytostatic effect of lectins. Inhibitory analysis showed that the possible targets of the lectins under study may be associated with cell surface or process of protein synthesis, depending on the lectin structure. Conclusions. The unique bacterial model is adequate for both the theoretical study of the mechanisms of lectin action and practical rapid tests of these biologically active substances cytostatic effects.
Keywords: Bacillus subtilis mutants, Alu-repeat insertion, PCR markers, lectins, inhibitory analysis.

References

Karpova I.S., Pidpala O.V., Shul'zhenko V.N., Kostetskiy I.E., Koretskaia N.V., Lukash L.L. Mutagennaia aktivnost' DNK rekombinantnykh plazmid v kompetentnoy kul'ture Bacillus subtilis. Tsitologiia i genetika. 1994. V. 28. P. 66–73. [in Russian]

Karpova I.S., Gorovenko N.G., Podol'skaia S.V., Rossokha Z.I., Koretskaia N.V., Dmitrenko V.V., Rymar' S.E. Insertsionnyy mekhanizm DNK-mutageneza. Vіsn. Ukr. tov-va genetikіv і selektsіonerіv. 2006. V. 4. P. 124–129. [in Russian]

Karpova I.S., Maliuta S.S. Mutahenna diia nukleinovykh kyslot i evoliutsiynyy protses. Visn. Ukr. tov-va henetykiv i selektsioneriv. 2011. V. 9. P. 134–146. [in Ukrainian]

Deininger P. Alu elements: know the SINEs. Genome Biology. 2011. -V. 12. P. 36-48. doi: 10.1186/gb-2011-12-12-236

Hasler J. and Strub K. Alu elements as regulators of gene expression. Nucleic Acids Research 2006. V. 34. P. 5491-5497. doi: 10.1093/nar/gkl706

Karimov D.D., Erdman V.V., Nasibullin T.R., Tuktarova I.A., Somova R.Sh., Timasheva Ia.R., Mustafina O.E. Alu-insertsionno-deletsionnyy polimorfizm genov COL13A1 i LAMA2:analiz assotsiatsiy s dolgozhitel'stvom. Genetika. 2016. V. 52. P. 1185-1193. [in Russian] doi: 10.1134/S1022795416100033

Liu B., Bian H., Bao J. Plant lectins: Potential antineoplastic drugs from bench to clinic. Cancer Letters. 2010. V. 287. P. 1-12. doi: 10.1016/j.canlet.2009.05.013

Lakhtin V.M., Afanas'ev S.S., Aleshkin V.A., Nesvizhskiy Iu.V., Lakhtin M.V., Shubin V.V., Cherepanova Iu.V., Pospelova V.V. Klassifikatsiia lektinov kak universal'nykh reguliatornykh molekul biologicheskikh sistem. Vestnik Rossiyskoy AMN. 2009. No. 3. P. 36-43. [in Russian]

Lukash L.L., Karpova I.S., Miroshnichenko O.S., Tikhonova T.N., Lylo V.V., Man'ko V.G., Sukhorada E.M., Golynskaia E.L. The effect of the lectin from Sambucus nigra inflorescences on spontaneous and alkylating agent-induced mutagenesis in mammalian somatic cells. Cytol. Genet. 1997. V. 31. P. 52-60.

Karpova I.S., Lylo V.V., Macewicz L.L., Kotsarenko K.V., Palchykovska L.G., Ruban T.O., Lukash L.L. Lectins of Sambucus Nigra as Biologically Active and DNA-protective Substances. Acta Hort. (ISHS). 2015. No. 1061. P. 93-102. doi: 10.17660/ActaHortic.2015.1061.9

Macewicz L.L., Lylo V.V., Karpova I.S., Kotsarenko K.V., Ruban T.A., Lukash L.L. Plant and animal lectines as modulators of MGMT and MARP gene expression in vitro. Factors in experimental evolution of organisms. 2014. V. 15. P. 260-264.

Lylo V.V., Karpova I.S., Kotsarenko K.V., Macewicz L.L., Ruban T.O., Lukash L.L. Lectins of Sambucus nigra in Regulation of Cellular DNA-protective Mechanisms. Acta Hort. (ISHS). 2015. No. 1061. P. 103-108. doi: 10.17660/ActaHortic.2015.1061.10

Delihas N. Impact of Small Repeat Sequences on Bacterial Genome Evolution. Genome Biology and Evolution. 2011. No. 3. P. 959-973. doi: 10.1093/gbe/evr077

Rademaker J.L.W., Bruijn F.J. Characterization and classification of microbes by Rep-PCR genomic fingerprinting and computer-assisted pattern analysis. Appl. Envir. Microbiol. 1998. V. 64. P. 2096-2104.

Lupski J.R., Wienstock G.M. Short, interspersed repetitive DNA sequences in procariotic genomes. Journ. of Bacter. 1992. V. 174. P. 4525-4529. doi: 10.1128/JB.174.14.4525-4529.1992

Alexander S., Leone S., Ostermeyer E. Translational control of discoidin lectin expression in drsA suppressor mutants of Dictyostelium discoideum. Mol. Cell. Biol. 1991. V. 11. P. 3171-3179. doi: 10.1128/MCB.11.6.3171