Disorders in dinitroaniline site opening as the factor, predetermining herbicide resistance of wild carrot
Abstract
Aim. To investigate the structural basis of carrot's natural resistance to dinitroaniline herbicides based on analysis of binding site volume and sequence variations in α-tubulin isotypes. Methods. AI-assisted molecular modeling (Protenix, based on AlphaFold3) for protein-ligand complexes reconstruction. Binding site volume and shape analysis applying CavitOmiX. Bioinformatics comparisons including sequence alignment (ClustalX), phylogenetic analysis (MEGA11) and 3D-visualization (PyMOL, Discovery Studio). Results. Structural and computational analysis of 8 α-tubulin isotypes from Daucus carota L. revealed significant structural and functional heterogeneity in dinitroaniline-binding regions (DBR). The binding site analysis, using Protenix demonstrated variability among carrot α-tubulin isotypes. Although TBA1, TBA5 and TBA8 showed a partially shaped binding pockets of reduced volume, the remaining isotypes (TBA2-TBA4, TBA6-TBA7) revealed its complete disruption. It suggests mechanism where some isotypes retain reduced binding potential, while others completely lack of it. Conclusions. In the frame of studies of the native resistance of carrot plants to dinitroaniline herbicides, current study indicates critical collapse in binding site pocket formation. Considering the ligand-induced nature of the dinitroaniline binding site, the disruption of the site pocket formation mechanism may be one of the main reasons for such natural resistance, making interaction with the ligand initially impossible.
References
Morrissette N. S., Mitra A., Sept D., Sibley L. D. Dinitroanilines bind alpha-tubulin to disrupt microtubules. Mol. Biol. Cell. 2004. Vol. 15 (4). P. 1960–1968. https://doi.org/10.1091/mbc.e03-07-0530.
Aguayo-Ortiz R., Dominguez L. Unveiling the possible oryzalin-binding site in the α-tubulin of Toxoplasma gondii. ACS Omega. 2022. Vol. 7 (22). P. 18434–18442. https://doi.org/10.1021/acsomega.2c00729.
Chu Z., Chen J., Nyporko A., Han H., Yu Q., Powles S. Novel α-Tubulin Mutations Conferring Resistance to Dinitroaniline Herbicides in Lolium rigidum. Front Plant Sci. 2018. Vol. 9. # 97. eCollection. 2018. https://doi.org/10.3389/fpls.2018.00097.
Ma C., Li C., Ganesan L., Oak J., Tsai S., Sept D., Morrissette N. S. Mutations in alpha-tubulin confer dinitroaniline resistance at a cost to microtubule function. Mol. Biol. Cell. 2007. Vol. 18 (12). P. 4711–4720. https://doi.org/10.1091/mbc.e07-04-0379.
Ma C., Tran J., Gu F., Ochoa R., Li C., Sept D., Werbovetz K., Morrissette N. Dinitroaniline activity in Toxoplasma gondii expressing wild-type or mutant alpha-tubulin. Antimicrob. Agents Chemother. 2010. Vol. 54 (4). P. 1453–1460. https://doi.org/10.1128/AAC.01150-09.
Mitra A., Sept D. Binding and interaction of dinitroanilines with apicomplexan and kinetoplastid alpha-tubulin. J Med Chem. 2006. Vol. 49 (17). P. 5226–5231. https://doi.org/10.1021/jm060472+.
Blume Y. B., Nyporko A. Y., Yemets A. I., Baird W. V. Structural modeling of the interaction of plant alpha-tubulin with dinitroaniline and phosphoroamidate herbicides. Cell Biol Int. 2003. Vol. 27 (3). P. 171–174. https://doi.org/10.1016/s1065- 6995(02)00298-6.
Nyporko A. Y., Yemets A. I., Brytsun V. N., Lozinsky M. O., Blume Y. B. Structural and biological characterization of the tubulin interaction with dinitroanilines. Cytol. Genet. 2009. Vol. 43. P. 267–282. https://doi.org/10.3103/S0095452709040082.
Melnyk O. G., Blume R. Ya., Karpov P. A. Differences in amino acid composition of carrot α-tubulin potentially confer the resistance to dinitroaniline herbicides. Faktori eksperimentalnoi evolucii organizmiv. 2023. Vol. 32. P. 47–52. https://doi.org/10.7124/FEEO.v32.1534.
Melnyk O. G., Ozheredov S. P., Blume Y. B., Karpov P. A. Structural features of carrot α-tubulin predetermining the natural resistance to dinitroaniline herbicides. Faktori eksperimentalnoi evolucii organizmiv. 2024. Vol. 35. P. 158–163. https://doi.org/10.7124/FEEO.v35.1678.
Stevenson G. A., Kirshner D., Bennion B. J., Yang Y., Zhang X., Zemla A., Torres M. W., Epstein A., Jones D., Kim H., Bennett W. F. D., Wong S. E., Allen J. E., Lightstone F. C. Clustering Protein Binding Pockets and Identifying Potential Drug Interactions: A Novel Ligand-Based Featurization Method. Journal of chemical information and modeling. 2023. Vol. 63 (21). P. 6655–6666. https://doi.org/10.1021/acs.jcim.3c00722.