Determination of phosphinothricin and paromomycin selective concentrations for obtaining transgenic spelt plants
Abstract
Aim. To determine the selective concentrations of phosphinothricin and paromomycin for the selection of transgenic plants of spelt wheat. Methods. Shoot apical meristem culture, mature embryo culture, Agrobacterium-mediated genetic transformation. Results. Isolation and cultivation of shoot apical meristems of seedlings from three spelt genotypes and mature embryos from three other genotypes were carried out. A high frequency (from 80 to 100 %) of callus induction from explants was observed. It was shown that the addition of 5 mg/l of phosphinothricin or 100 mg/l of paromomycin to the culture medium almost completely inhibited plant regeneration compared to the control. After Agrobacterium-mediated genetic transformation of calli with a vector containing the phosphinothricin-N-acetyltransferase gene, regeneration of spelt shoots for one genotype was observed on a selective medium with 5 mg/l phosphinothricin. Conclusions. The selective concentrations of herbicide and antibiotic for obtaining transgenic spelt wheat plants with the corresponding marker genes are 5 mg/l for phosphinothricin and 100 mg/l for paromomycin.
References
Erenstein O., Jaleta M., Mottaleb K. A., Sonder K., Donovan J., Braun H. J. Global trends in wheat production, consumption and trade. In: Reynolds M. P., Braun H. J. (eds) Wheat Improvement. Springer, Cham. 2022. doi: 10.1007/978-3-030-90673-3_4.
Babenko L. M., Hospodarenko H. M., Rozhkov R. V., Pariy Y. F., Pariy M. F., Babenko A. V., Kosakivska I. V. Triticum spelta: Origin, biological characteristics and perspectives for use in breeding and agriculture. Regul. Mech. Biosyst. 2018. 9 (2). P. 250–257. Retrieved from: https://medicine.dp.ua/index.php/med/article/view/436.
Sidorov V. A. Plant tissue culture in biotechnology: recent advances in transformation through somatic embryogenesis. Biotechnologia Acta, 2013. Vol. 6 (4) P. 118-131. doi: 10.15407/biotech6.04.118.
Alikina O., Chernobrovkina M., Dolgov S., Miroshnichenko D. Tissue culture efficiency of wheat species with different genomic formulas. Crop Breeding and Applied Biotechnology. 2016. Vol. 16 (4). P. 307–314. doi: 10.1590/1984-70332016v16n4a46.
Sticklen M. B., Oraby H. F. Shoot apical meristem: a sustainable explant for genetic transformation of cereal crops. In Vitro Cell. Dev. Biol. – Plant. 2005. Vol. 41 (3). P. 187–200. doi: 10.1079/IVP2004616.
Bavol A. V., Dubrovna O. V. Lyalko I. I. Plant regeneration from shoot tips of wheat. The Bulletin of Vavilov Society of Geneticists and Breeders of Ukraine. 2007. Vol. 5 (1–2). P. 3–10. [in Ukrainian]
Shrawat A. K., Lörz H. Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Bio-technol. J. 2006. Vol. 4. P. 575–603. doi: 10.1111/j.1467-7652.2006.00209.x.
Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 1962. Vol. 15. Р. 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x.
Pescitelli S. M., Sukhapinda K. Stable transformation via electroporation into maize Type II callus and regeneration of fertile transgenic plants. Plant Cell Rep. 1995. Vol. 14. P. 712–716. doi: 10.1007/BF00232653.
Morel G., Wetmore R. H. Fern callus tissue culture. Am. J. Bot. 1951. Vol. 38 (2), P. 141–143. doi: 10.1002/j.1537-2197.1951.tb14804.x.
Gorbatyuk I. R., Shcherbak N. L., Bannikova M. O., Velykozhon L. H., Kuchuk M. V., Morgun B. V. Establishing transgenic wheat plants of cv. Zymoyarka resistant to the herbicide phosphinothricin in vitro. Fiziol. Rast. Genet. 2016, Vol. 48 (1). P. 65–74. doi: 10.15407/frg2016.01.065. [in Ukrainian]
Sidorov V., Duncan D. Agrobacterium-mediated maize transformation: immature embryos versus callus. Methods in Molecular Biology: Transgenic Maize. M. Paul Scott (ed.). USA : Humana press, 2009. P. 47–58. doi: 10.1007/978-1-59745-494-0_4.
Ozgen M., Birsin M. A., Benlioglu B. Biotechnological characterization of a diverse set of wheat progenitors (Aegilops sp. and Triticum sp.) using callus culture parameters. Plant Genetic Resources: Characterization and Utilization. 2017. 15 (1). P. 45–50. doi: 10.1017/S1479262115000350.
Kyriienko A. V., Shcherbak N. L., Kuchuk M. V., Parii M. F., Symonenko Yu. V. In vitro plant regeneration from mature embryos of amphidiploid spelt Triticum spelta L. In Vitro Cellular & Developmental Biology – Plant. 2021. doi: 10.1007/s11627-021-10158-4.
Kyriienko A., Parii M., Kuchuk N., Symonenko Yu., Shcherbak N. Elaboration of an effective method of callusogenesis induction from mature germs of Triticum spelta L. and T. aestivum L. Plant Varieties Studying and Protection. 2019. Vol. 15, Is. 3. Р. 259–266. doi: 10.21498/2518-1017.15.3.2019.181084. [in Ukrainian]
Kyriienko A. V., Parii M. F., Symonenko Yu. V., Kuchuk M. V., Shcherbak N. L. Callus induction from shoot apical meristem in Triticum spelta L. and T. aestivum L. Factors in Experimental Evolution of Organisms. doi: 10.7124/FEEO.v25.1169. [in Ukrainian]
Nitovska I. O., Avilov I. D., Morgun B. V. The positive effect of antibiotic paromomycin compared with kanamycin for selection of transgenic plants with nptII gene on the example of Nicotiana tabacum. Factors in Experimental Evolution of Organisms. 2015. Vol. 17. P. 270–273.
Nitovska I. O., Morgun B. V., Abraimova O. Ye., Satarova T. M. Glyphosate selection of maize transformants containing CP4 epsps gene. Factors in Experimental Evolution of Organisms. 2020. Vol. 26. P. 239–244. doi: 10.7124/FEEO.v26.1273.