Research of salt tolerance of genetically modified wheat plants with an additional copy of the ornithine-Δ-aminotransferase gene

Keywords: winter wheat, transgenic plants, ornithine-δ-aminotransferase, salinity, proline, salt tolerance

Abstract

Aim. To investigate the level of resistance to salt stress of T3 and T4 seed generation plants of genetically modified wheat (Triticum aestivum L.) with an additional copy of the ornithine-δ-aminotransferase (oat) gene and their original genotypes. Methods. Determination of the content of free L-proline (Pro) and physiological and morphometric parameters. Results. The level of Pro was studied and the morphometric and growth parameters of the offspring of transgenic plants and their original forms under normal / stress conditions were analyzed. Conclusions. T3 and T4 wheat plants under salinity conditions had a higher percentage and higher rate of seed germination compared to the original genotypes. During in vitro cultivation of seedlings, a stress state was observed at doses of 250 and 300 mM NaCl, at which the percentage of survival of transgenic variants was 83.3, non-transgenic only 33.3. Under conditions of in vivo salt stress, T3 and T4 plants had taller shoots and longer roots compared to the original forms. The survival rate of genetically modified plants was ~ 90 %, non-transgenic plants about 60 %. There was no significant difference in the accumulation of free L-proline between the investigated plant variants. It increased in transgenic seedlings on the 21st day of stress under conditions of artificially simulated salinity.

References

Raza A., Razzaq A., Mehmood S. S., Zou X., Zhang X., Lv Y., Xu J. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants. 2019. Vol. 8. Р. 34. doi: 10.3390/plants8020034.

Morgun V. V., Dubrovna O. V., Morgun B. V. Modern biotechnologies for stress-resistant wheat plants. Plant physiology and genetics. 2016. Vol. 48 (3). P. 196–213. doi: 10.15407/frg2016.03.196. [in Ukrainian]

Joshi R., Anwar K., Das P., Sneh L. S.-P., Pareek A. Overview of methods for assessing salinity and drought tolerance of transgenic wheat lines. In Wheat Biotechnology; Springer: New York, NY, USA. 2017. 1679. Р. 83–95. doi: 10.1007/978-1-4939-7337-8_5.

Hossain A., Skalicky M., Brestic M., Maitra S., Ashraful Alam M., Syed M. A., Hossain J., Sarkar S., Saha S., Bhadra P., Shankar T., Bhatt R., Kumar C. A., EL Sabagh A., Islam T. Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy. 2021. Vol. 11 (2). Р. 241. doi: 10.3390/agronomy11020241.

Sergeeva L. E., Mykhalska S. I., Komisarenko A. G. Modern biotechnologies for increasing plant resistance to osmotic stresses. Kyiv : Kondor, 2019. 160 p. [in Russian]

Dubrovna O. V., Mykhalska S. I., Komisarenko A. G. Using proline metabolism genes in plant genetic engineering. Cytology and Genetics. 2022. Vol. 56 (4). P. 361–378. doi: 10.3103/S009545272204003X.

Kolupaev Yu. E., Vainer A. A., Yastreb T. O. Proline: physiological functions and regulation of the content in plants under stress conditions Newsletter Kharkiv. nat. agrarian. un-tu. Ser. Biol. 2014. 2 (32). P. 6–22. Retrieved from: https://repo.btu.kharkov.ua//handle/123456789/9047. [in Russian]

Anwar A., Wang K., Wang J. Expression of Arabidopsis ornithine aminotransferase (AtOAT) encoded gene enhances multiple abiotic stress tolerances in wheat. Plant Cell Rep. 2021. Vol. 40 (7). Р. 1155–1170. doi: 10.1007/s00299-021-02699-0.

Morgun B. V., Tishchenko E. N. Molecular biotechnology to improve the resistance of cultivated cereals to osmotic stress. Kyiv : Logos, 2014. 219 p. [in Russian]

Roosens N., Bitar F., Loenders K. Overexpression of ornithine–aminotransferase increases proline biosynthesis and confers osmotolerance in transgenic plants. Mol. Breed. 2002. Vol. 9 (2). Р. 73–80. doi: 10.1023/A%3A1026791932238.

Anwar A., She M., Wang K., Ye X. Biological roles of ornithine aminotransferase (OAT) in plant stress tolerance: present progress and future perspectives. Int J Mol Sci. 2018. Vol. 19. Р. 3681. doi: 10.3390/ijms19113681.

Martin-Tanguy J. Metabolism and function of polyamines in plants: recent development (new approaches). Plant Growth Regul. 2001. Vol. 34 (1). Р. 135–148. doi: 10.1023/A:1013343106574.

Liu C., Xue Z., Tang D., Shen Y., Shi W., Ren L., Du G., Li Y., Cheng Z. Ornithine δ-aminotransferase is critical for floret development and seed setting through mediating nitrogen reutilization in rice. Plant J. 2018. Vol. 96. Р. 842–854. doi: 10.1111/tpj.14072.

Anwar A., She M., Wang K., Ye X. Cloning and molecular characterization of Triticum aestivum ornithine amino transferase (TaOAT) encoding genes. BMC Plant Biol. 2020. Vol. 20. Р. 187–187. doi: 10.1186/s12870-020-02396-2.

Madan S., Nainawatee H. S., Jain R. K., Chowdhury J. B. Proline and proline metabolizing enzymes in vitro selected NaCl-tolerant Brassica juncea L. under salt stress. Annals of Botany. 1995. Vol. 76 (1). P. 51–57. doi: 10.1006/anbo.1995.1077.