Investigation of phytotoxic effects of fullerene С60 with the use of Allium-test

  • A. Yu. Buziashvili Institute of Food Biotechnology and Genomics NAS of Ukraine, Ukraine, 04123, Kyiv, Baidy Vyshnevetskoho str., 2A https://orcid.org/0000-0002-8283-5401
  • O. V. Melnychuk Institute of Food Biotechnology and Genomics NAS of Ukraine, Ukraine, 04123, Kyiv, Baidy Vyshnevetskoho str., 2A
  • S. V. Prylutska National University of Life and Environmental Sciences of Ukraine, Ukraine, 03041, Kyiv, Heroiv Oborony str., 13 https://orcid.org/0000-0001-5280-8341
  • A. I. Yemets Institute of Food Biotechnology and Genomics NAS of Ukraine, Ukraine, 04123, Kyiv, Baidy Vyshnevetskoho str., 2A https://orcid.org/0000-0001-6887-0705
Keywords: carbon nanomaterials, fullerene С60, Allium cepa, genotoxicity

Abstract

Aim. To investigate the cytogenetic effects of water-soluble fullerene C60 with the use of Allium test. To study the influence of various concentrations of fullerene С60 on the morpho-physiological parameters of A. cepa. Methods. The influence of different concentrations of fullerene С60 (25–100 μg/ml) on the induction of root formation and their growth, as well as its cytogenetic effects on the meristematic cells of root apices, were investigated. Results. It was found that fullerene C60 at concentrations of 50 and 75 μg/ml induced root formation and stimulated root growth, though causing minor deformations. Also, it was shown that fullerene С60 disrupts the progression of various phases of mitosis in the meristematic cells of roots, along with the occurrence of chromosomal aberrations at all investigated concentrations. Conclusions. The cytogenetic effects of water-soluble fullerene C60 were investigated for the first time using the Allium-test. Both positive effects on the morphophysiological parameters of A. cepa and its genotoxicity were demonstrated, which could indicate the disruptions in the mechanisms of spindle formation.

References

Prylutska S. V., Matyshevska O. P., Grynyuk I. I., Prylutskyy Yu. I., Ritter U., Scharff P. Biological effects of C60 fullerenes in vitro and in a model system. Mol. Cryst. Liq. Cryst. 2007. Vol. 468. P. 265–274. doi: 10.1080/15421400701230105.

De La Torre-Roche R., Hawthorne J., Deng Y., Xing B., Cai W., Newman L., Wang Q., Ma X., Helmi H., White J. C. Multi-walled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ. Sci. Technol. 2013. Vol. 7. P. 12539–12547. doi: 10.1021/es4034809.

Ma X., Wang, C. Fullerene nanoparticles affect the fate and uptake of trichloroethylene in phytoremediation systems. Environ. Eng. Sci. 2010. Vol. 27. P. 989–992. doi: 10.1089/ees.2010.0141

Syakhril B. Aceto-orcein staining for counting somatic chromosomes in castor (Ricinus communis L.). Biosci. Res. 2019. Vol. 16 (2). P. 2336–2342.

Ouzid Y., Kaci-Boudiaf M.N., Zeghouini A., Madi A.-O., Smail-Saadoun N., Houali K. Antimitotic and genotoxic effect of methanolic extracts of leaves of Peganum harmala L. on the meristematic cells of Allium cepa L. Bioagro. 2023. Vol. 35 (2). P. 97–104. doi: 10.51372/bioagro352.2.

Liu Q., Zhang X., Zhao Y., Lin J., Shu C., Wang C., Fang X. Fullerene-induced increase of glycosyl residue on living plant cell wall. Environ. Sci. Technol. 2013. Vol. 47 (13). P. 7490–7498. doi: 10.1021/es4010224.

Liu Q., Zhao Y,, Wan Y., Zheng J., Zhang X., Wang C., Fang X., Lin J. Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level. ACS Nano. 2010. Vol. 4 (10). P. 5743–5748. doi: 10.1021/nn101430g.

Gao J., Wang Y., Folta K. M., Krishna V., Bai W., Indeglia P., et al. Polyhydroxy fullerenes (fullerols or fullerenols): beneficial effects on growth and lifespan in diverse biological models. PLoS ONE. 2011. Vol. 6 (5). e19976. doi: 10.1371/journal.pone.0019976.

Kole C., Kole P., Randunu K. M., Choudhary P., Podila R., Ke P. C., Rao A. M., Marcus R. K. Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol. 2013. Vol. 13 (1). 37. doi:10.1186/1472-6750-13-37.

Prylutska S. V., Franskevych D. V., Yemets A. I. Cellular biological and molecular genetic effects of carbon nanomaterials in plants. Cytol. Genet. 2022. Vol. 56. P. 351–360. doi: 10.3103/S0095452722040077.

Singh A., Bhati A., Tripathi K. M., Sonkar S. K. Nanocarbons in agricultural plants: can be a potential nanofertilizer? In Nano-technology in Environmental Science (editors: Hussain C. M., Mishra A. K.). Wiley‐VCH Verlag GmbH & Co, KGaA. 2018. P. 153–190. doi: 10.1002/9783527808854.ch6.

Husen A., Siddiqi K. S. Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol. 2014. Vol. 12. 16. doi: 10.1186/1477-3155-12-16.

Li H., Huang J., Lu F., Liu Y., Song Y., Sun Y., Zhong J., Huang H., Wang Y., Li S., Lifshitz Y., Lee S. T., Kang Z. Impacts of carbon dots on rice plants: boosting the growth and improving the disease resistance. ACS Appl. Bio. Mater. 2018. Vol. 1 (3). P. 663–672. doi: 10.1021/acsabm.8b00345.

He A., Jiang J., Ding J., Sheng G. D. Blocking effect of fullerene nanoparticles (nC60) on the plant cell structure and its phyto-toxicity. Chemosphere. 2021. Vol. 278. 130474. doi: 10.1016/j.chemosphere.2021.130474.