Comparative analysis of Brassica carinata and fungal industrial lipases used for biodiesel production

Keywords: abyssinian mustard, oilseed crops, Brassica carinata, biodiesel, lipase, transesterification, genome-wide analysis

Abstract

Aim. To identify the genes of endogenous TAG-lipases in the genome of Abyssinian mustard, or carinata (Brassica carinata), and to analyze the similarity of their amino acid sequences with the industrial lipases of fungal origin. Methods. Genome-wide search for B. carinata TAG-lipase sequences was conducted out, annotation of the identified genes, alignment of their sequences, phylogenetic analysis was performed, as well as identification of conserved sequence motifs and functional domains of these proteins was done. Results. 13 TAG-lipase genes were identified in the genome of Abyssinian mustard, and their phylogenetic relations with camelina and fungal lipases was reconstructed. The domain structure of carinata TAG-lipases was analyzed, and the level of sequence divergence of their functional regions was also revealed. Conclusions. Fungal lipases were identified, which are most similar in terms of domain organization to the identified TAG-lipases of B. carinata, and therefore could potentially be used to increase the efficiency of transesterification of carinata oil.

References

Hotsuliak V. Y., Blume R. Y., Blume Y. B. Comparative analysis of Camelina sativa and fungal industrial lipases used for bio-diesel production. Factors Exp. Evol. Organisms. 2023. Vol. 32. P. 23–30. doi: 10.7124/FEEO.v32.1530. [in Ukrainian]

Gesch R. W., Isbell T. A., Oblath E. A., Allen B. L., Archer D. W., Brown J., Hatfield J. L., Jabro J. D., Kiniry J. R., Long D. S., Vigil M. F. Comparison of several Brassica species in the north central U.S. for potential jet fuel feedstock. Ind. Crop. Prod. 2015. Vol. 75. P. 2–7. doi: 10.1016/j.indcrop.2015.05.084.

Marillia E. F., Francis T., Falk K. C., Smith M., Taylor D. C. Palliser’s promise: Brassica carinata, an emerging western Canadian crop for delivery of new bio-industrial oil feedstocks. Biocatalysis Agricult. Biotechnol. 2014. Vol. 3 (1). P. 65–74. doi: 10.1016/j.bcab.2013.09.012.

Seepaul R., Kumar S., Iboyi J.E., Bashyal M., Stansly T. L., Bennett R., Boote K. J., Mulvaney M. J., Small I. M., George S., Wright D. L. Brassica carinata: Biology and agronomy as a biofuel crop. GCB Bioenergy. 2021. Vol. 13. P. 582–599. doi: 10.1111/gcbb.12804.

Blume R. Y., Rakhmetov D. B., Rakhmetova S. O., Hotsuliak V. Y., Yemets A. I., Blume Y. B. Introduction and performance of emerging biofuel crop Brassica carinata in Ukraine. Eur. Biomass Conf. Exhib. Proc. 2023. Vol. 1. P. 104–106. doi: 10.5071/31stEUBCE2023-1AV.4.4.

Santaraite M., Sendzikiene E., Makareviciene V., Kazancev K. Biodiesel production by lipase-catalyzed in situ transesterification of rapeseed oil containing a high free fatty acid content with ethanol in diesel fuel media. Energies. 2020. Vol. 13. P. 2588. doi: 10.3390/en13102588.

Hatje K., Keller O., Hammesfahr B., Pillmann H., Waack S., Kollmar M. Cross-species protein sequence and gene structure prediction with fine-tuned Webscipio 2.0 and Scipio. BMC Res. Notes. 2011. Vol. 4. P. 265. doi: 10.1186/1756-0500-4-265.

Chen C., Wu Y., Li J., Wang X., Zeng Z., Xu J., Liu Y., Feng J., Chen H., He Y., Xia R. TBtools-II: A "one for all, all for one" bioinformatics platform for biological big-data mining. Mol. Plant. 2023. Vol. 16. P. 1733–1742. doi: 10.1016/j.molp.2023.09.010.

Trifinopoulos J., Nguyen L. T., von Haeseler A., Minh B.Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016. Vol. 44 (W1). P. W232–235. doi: 10.1093/nar/gkw256.

Letunic I., Bork P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021. Vol. 49 (W1). P. W293–296. doi: 10.1093/nar/gkab301.

Huang A. H. C. Plant lipid droplets and their associated proteins: potential for rapid advances. Plant Physiol. 2018. Vol. 176 (3). P. 1894–1918. doi: 10.1104/pp.17.01677.

Verdasco-Martín C. M., Villalba M., dos Santos J. C. S., Tobajas M., Fernandez-Lafuente R., Otero C. Effect of chemical modification of Novozym 435 on its performance in the alcoholysis of camelina oil. Biochem. Eng. J. 2016. Vol. 111. P. 75–86. doi: 10.1016/j.bej.2016.03.004.

Akanbi T. O., Barrow C. J. Candida antarctica lipase A effectively concentrates DHA from fish and thraustochytrid oils. Food Chem. 2017. Vol. 229. P. 509–516. doi: 10.1016/j.foodchem.2017.02.099.

Toida J., Arikawa Y., Kondou K., Fukuzawa M., Sekiguchi J. Purification and characterization of triacylglycerol lipase from Aspergillus oryzae. Biosci. Biotechnol. Biochem. 1998. Vol. 62 (4). P. 759–763. doi: 10.1271/bbb.62.759.

Caballero E., Soto C., Olivares A., Altamirano C. Potential Use of avocado oil on structured lipids MLM-type production catalysed by commercial immobilised lipases. PLoS ONE. 2014. Vol. 9 (9). P. e107749. doi: 10.1371/journal.pone.0107749.