Influence of dextran-70 on the cytotoxic effect of EMAP II on glioma cells in vitro
Abstract
Aim. To evaluate with the use of the MTT test how the formation of a nanocomposite complex of the cytokine EMAP II with dextran-70 affects the cytotoxic effect of the free protein in glioma cell cultures of different origins: a standart culture U251MG cells and a primary culture of cells obtained from tumor fragments. Methods. The recombinant polypeptide EMAP II was obtained using gene engineering biotechnology. The study was conducted on the standard human glioma cell line U251MG and on primary cell cultures obtained from tumor fragments after surgical removal. Cell viability was determined using the MTT test. The cells were cultivated for a day with t the different concentrations from 1.0 pM to 10 μM of EMAP II and the EMAP II + dextran-70 complex im serum-free standard DMEM growth medium. Results. In our previous works, it has been shown that EMAP II exhibited dose-dependent cytotoxic properties in the concentration range of 1.0 pM – 10 μM on U251MG glioma cells and in primary cell cultures. The dose-effect curve in all cases has a complex pattern. Dextran-70 does not fundamentally affect the cytotoxic effect of EMAP II, but depending on the dose and type of cells, it shows the ability to slightly weaken/enhance the effect of the free protein. An increased sensitivity of the primary culture of glioma cells to the cytotoxic effect of the EMAP II + dextran-70 complex was revealed. Conclusions. Dextran-70 does not fundamentally affect the cytotoxic effect of EMAP II, but depending on the dose and type of cells, it shows the ability to slightly weaken/enhance the effect of the latter.
References
Arruebo M., Vilaboa N., Sáez-Gutierrez B. et al. Assessment of the evolution of cancer treatment therapies. Cancers (Basel). 2011. Vol. 3. P. 327–330. doi: 10.3390/cancers3033279.
Khranovska N. M., Skachkova O. V., Horbach O. I., Zhukova V. M., Hlavatskyi O. Ia., Zemskova O. V., Khmelnytskyi H. V., Shuba I. M. Pershyi dosvid vykorystannia imunoterapii na osnovi dendrytnykh klityn v kompleksnomu likuvanni khvorykh na hlioblastomu. Klinichna onkolohiya. 2019. Vol. 9 (2). P. 80–86. doi: 10.32471/clinicaloncology.2663-466X.38.22510.
Russo S., Cinausero M., Gerratana L., Bozza C., Iacono D., Driol P., a Deroma L., Sottile R., Fasola G., Puglisi F. Factors affecting patient's perception of anticancer treatments side-effects: an observational study. Expert Opin Drug. 2014. Vol. 13 (2). P. 139–150. doi: 10.1517/14740338.2013.830710.
Xie M., Liu D., Yang Y. Anti-cancer peptides: classification, mechanism of action, reconstruction and modification. Open Biol. 2020. doi: 10.1098/rsob.200004.
Tas M. P., Murray J. C. Endothelial-monocyte-activating polypeptide II. Int J Biochem Cell Biol. 1996. Vol. 28 (8). P. 837–841. doi: 10.1016/1357-2725(96)00038-6.
Berger A. C., Tang G., Alexander H. R., Libutti S. K. Endothelial monocyte-activating polypeptide II, a tumor-derived cytokine that plays an important role in inflammation, apoptosis, and angiogenesis. J Immunother. 2000. Vol. 23 (5). P. 519–527. doi: 10.1097/00002371-200009000-00002.
Hofmann M., Winzer M., Weber C., Gieseler H. Prediction of Protein Aggregation in High Concentration Protein Solutions Utilizing Protein-Protein Interactions Determined by Low Volume Static Light Scattering. J. Pharm. Sci. 2016. Vol. 105 (6). P. 1819–1828. doi: 10.1016/j.xphs.2016.03.022.
Roberts C. J. Protein aggregation and its impact on product quality. Curr. Opin. Biotechnol. 2014. Vol. 30. P. 211–217. doi: 10.1016/j.copbio.2014.08.001.
Wu F., Zhou Z., Su J., Wei L., Yuan W., Jin T. Development of dextran nanoparticles for stabilizing delicate proteins. Nanoscale Res Lett. 2013. Vol. 8 (1). doi: 10.1186/1556-276X-8-197.
Kolomiets L. A., Vorobyova N. V., Lozhko D. M., Zayets V. N., Kornelyuk A. I. Stabilization of AIMP1/p43 and EMAP II recombinant proteins in the complexes with dextran-70 polysaccharide. Pharmacological Reports. 2020. Vol. 72 (1). P. 238–245. doi: 10.1007/s43440-019-00016-x.
Louis D. N., Perry A., Wesseling P. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro-Oncology. 2021. Vol. 23 (8). P. 1231–1251. doi: 10.1093/neuonc/noab106.
Shuba I. M., Lylo V. V., Karpova I. S., Hlavatskyi O. Ia., Korneliuk O. I. The primary culture of malignant glioma cells as a model for the study of anti-tumor activity of substances. Visn. Ukr. tov-va henetykiv i selektsioneriv. 2019. Vol. 17 (2). P. 196–203. doi: 10.7124/visnyk.utgis.17.2.1221
Stockert J. C., Horobin R. W., Colombo L. L., Blázquez-Castro A. Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochemica. 2018. Vol. 120. P. 159–167. doi: 10.1016/j.acthis.2018.02.005.
Kornelyuk A. I., Tas M. P. R., Dybrovsky A., Murray C. Cytokine activity of the non-catalytic EMAP-2-like domain of mamma-lian tyrosyl-tRNA synthetase. Byopolymers. 1999. Vol. 15 (2). P. 168–172. doi: 10.7124/bc.000516
Reznikov A. G., Chaykovskaya L. V., Polyakova L. I., Grigorenko V. N., Kornelyuk A. I. Cooperative antitumor effect of recombinant polypeptide EMAP II and flutamide on human prostate cancer xenografts. Experim.Oncology. 2011. Vol. 33 (4). P. 231–234.