Comparative analysis of Camelina sativa and fungal industrial lipases used for biodiesel production

  • V. Y. Hotsuliak Institute of Food Biotechnology and Genomics, Natl. Acad. Sci. Ukraine, Ukraine, 04123, Kyiv, Baidy-Vyshnevetskoho str., 2А https://orcid.org/0009-0007-5162-7232
  • R. Y. Blume Institute of Food Biotechnology and Genomics, Natl. Acad. Sci. Ukraine, Ukraine, 04123, Kyiv, Baidy-Vyshnevetskoho str., 2А
  • Y. B. Blume Institute of Food Biotechnology and Genomics, Natl. Acad. Sci. Ukraine, Ukraine, 04123, Kyiv, Baidy-Vyshnevetskoho str., 2А
Keywords: false flax, oilseed crops, Camelina sativa, biodiesel, lipase, transesterification, genome-wide analysis

Abstract

Aim. To identify the genes of false flax (Camelina sativa) endogenous lipases and to analyze the sequence similarity of their key functional domains with those of commercially available lipases. Methods. A detailed search of the databases was carried out in order to identify the sequences of lipases of various species, as well as their sequences were aligned, conservative sequence motifs were identified, the domain structure of the detected proteins was established, and phylogenetic analysis was carried out. Results. 15 triacylglycerol lipase genes were identified, and corresponding sequences of lipases for commercially available products were identified as well. Their domain structure was analyzed, and the level of sequence divergence of their functional regions was also revealed. Conclusions. The lipases that are most similar in terms of sequence and domain organization to the lipases of false flax have been identified, and therefore could potentially be used for more effective transesterification of oil with a specific fatty acid composition for this species.

References

Blume R. Y., Rakhmetov D. B., Blume Y. B. Evaluation of Ukrainian Camelina sativa germplasm productivity and analysis of its amenability for efficient biodiesel production. Ind. Crop. Prod. 2022. Vol. 187 B. P. 115477. doi: 10.1016/j.indcrop.2022.115477.

Stamenković O. S., Gautam K., Singla-Pareek S. L., Dhankher O. P., Djalović I. G., Kostić M. D., Mitrović P. M., Pareek A., Veljković V. B. Biodiesel production from camelina oil: Present status and future perspectives. Food Energy Secur. 2021. Vol. 00. P. e340. doi: 10.1002/fes3.340.

Tao L., Milbrandt A., Zhang Y., Wang W. C. Techno-economic and resource analysis of hydroprocessed renewable jet fuel. Biotechnol. Biofuels. 2017. Vol. 10. P. 261. doi: 10.1186/s13068-017-0945-3.

Blume R. Ya. Current state and perspectives of false flax (Camelina sativa) cultivation in Ukraine. Factors Exp. Evol. Organisms. 2022. Vol. 31. P. 28–34. doi: 10.7124/FEEO.v31.1480. [in Ukrainian]

Zanetti F., Alberghini B., Jeromela A. M., Grahovac N., Rajković D., Kiprovski B., Monti A. Camelina, an ancient oilseed crop actively contributing to the rural renaissance in Europe. A review. Agron. Sustain. Dev. 2021. Vol. 41. P. 2. doi: 10.1007/s13593-020-00663-y.

Verdasco-Martín C. M., Villalba M., dos Santos J. C. S., Tobajas M., Fernandez-Lafuente R., Otero C. Effect of chemical modification of Novozym 435 on its performance in the alcoholysis of camelina oil. Biochem. Eng. J. 2016. Vol. 111. P. 75–86. doi: 10.1016/j.bej.2016.03.004.

Bailey T. L., Johnson J., Grant C. E., Noble W. S. The MEME Suite. Nucleic Acids Res. 2015. Vol. 43 (W1). P. W39–W49. doi: 10.1093/nar/gkv416.

Paysan-Lafosse T., Blum M., Chuguransky S., Grego T., Pinto B. L., Salazar G. A., Bileschi M. L., Bork P., Bridge A., Colwell L., Gough J., Haft D. H., Letunić I., Marchler-Bauer A., Mi H., Natale D. A., Orengo C. A., Pandurangan A. P., Rivoire C., Sigrist C. J. A., Sillitoe I., Thanki N., Thomas P. D., Tosatto S. C. E., Wu C. H., Bateman A. InterPro in 2022. Nucleic Acids Res. 2023. Vol. 51 (D1). P. D418–D427. doi: 10.1093/nar/gkac993.

Chen C., Chen H., Zhang Y., Thomas H. R., Frank M. H., He Y., Xia R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant. 2020. Vol. 13 (8). P. 1194–1202. doi: 10.1016/j.molp.2020.06.009.

Edgar R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acid. Res. 2004. Vol. 32 (5). P. 1792–1797. doi: 10.1093/nar/gkh340.

Kumar S., Stecher G., Li M., Knyaz C., Tamura, K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018. Vol. 35. P. 1547–1549. doi: 10.1093/molbev/msy096.

Akanbi T. O., Barrow C. J. Candida antarctica lipase A effectively concentrates DHA from fish and thraustochytrid oils. Food Chem. 2017. Vol. 229. P. 509–516. doi: 10.1016/j.foodchem.2017.02.099.

Toida J., Arikawa Y., Kondou K., Fukuzawa M., Sekiguchi J. Purification and characterization of triacylglycerol lipase from Aspergillus oryzae. Biosci. Biotechnol. Biochem. 1998. Vol. 62 (4). P. 759–763. doi: 10.1271/bbb.62.759.

Caballero E., Soto C., Olivares A., Altamirano C. Potential Use of avocado oil on structured lipids MLM-type production catalysed by commercial immobilised lipases. PLoS ONE. 2014. Vol. 9 (9). P. e107749. doi: 10.1371/journal.pone.0107749.