Distribution of biosynthetic gene clusters for complestatin and related compounds in Streptomyces spp.
Abstract
Aim. In current work we have analyzed 2664 genomes of Streptomyces spp. (publically available from GenBank) searching for complestatin-like biosynthetic gene clusters (BGCs). Then we aimed to reconstruct in silico putative biosynthetic pathways, encoded within these BGCs, estimating the chemical variability of complestatin-like compounds from natural sources. Methods. Widely accepted genome-mining tools and approaches for phylogenetic reconstruction were utilized in this work. Results. 53 genomes of Streptomyces spp. were found to contain complestatin-like BGCs, although only 33 BGCs were found within one contig – others were partial or highly fragmented. Reconstruction of multi-locus phylogeny for 33 found BGCs and complestatin BGC allowed to divide all these BGCs into five phylogenetic subgroups. Representatives of each subgroup exhibited characteristic organization of corresponding BGCs. Reconstruction of putative biosynthetic pathways allowed us to predict that discovered BGCs might potentially code the biosynthesis of new complestatin derivatives: norcomplestatin, N-malonyl-norcomplestatin, and N-acetyl-norcomplestatin. Conclusions. Complestatin-like BGCs are widely distributed among Streptomyces spp. and might encode novel complestain derivatives, which merits further experimental investigation.
References
Yushchuk O., Ostash B. Glycopeptide antibiotics: genetics, chemistry, and new acreening approaches. in Natural Products from Actinomycetes: Diversity, Ecology and Drug Discovery. 2022. P. 411–444. doi: 10.1007/978-981-16-6132-7_16.
Kaneko I., Kamoshida K., Takahashi S. Complestain, a potent anti-complement substance produced by Streptomyces lavendulae. I. Fermentation, isolation and biological characterization. J. Antibiot. (Tokyo). 1989. Vol. 42. P. 236–241. doi: 10.7164/antibiotics.42.236.
Culp E.J., Waglechner N., Wang W., Fiebig-Comyn A.A., Hsu Y.P., Koteva K., Sychantha D., Coombes B.K., van Nieuwenhze M.S., Brun Y.V. et al. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodelling. Nature. 2020. Vol. 578. P. 582–587. doi: 10.1038/s41586-020-1990-9.
Park Ji-Su, Choi Ha-Young, Kim Won-Gon. The nitrite transporter facilitates biofilm formation via suppression of nitrite reductase and is a new antibiofilm target in Pseudomonas aeruginosa. mBio. 2020. Vol. 11. P. e00878-20. doi: 10.1128/mBio.00878-20.
Momota K., Kaneko I., Kimura S., Mitamura K., Shimada K. Inhibition of human immunodeficiency virus type-1-induced syncytium formation and cytopathicity by complestatin. Biochem. Biophys. Res. Commun. 1991. Vol. 179. P. 243–250. doi: 10.1016/0006-291X(91)91361-F.
Seo S.Y., Yun B.S., Ryoo I.J., Choi J.S., Joo C.K., Chang S.Y., Chung J.M., Oh S., Gwag B.J., Yoo I.D. Complestatin is a noncompetitive peptide antagonist of N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptors: secure blockade of ischemic neuronal death. J. Pharmacol. Exp. Ther. 2001. Vol. 299. P. 377–384.
Kim E.C., Yun B.S., Ryoo I.J., Min J.K., Won M.H., Lee K.S., Kim Y.M., Yoo I.D., Kwon Y.G. Complestatin prevents apoptotic cell death: inhibition of a mitochondrial caspase pathway through AKT/PKB activation. Biochem. Biophys. Res. Commun. 2004. Vol. 313. P. 193–204. doi: 10.1016/j.bbrc.2003.11.104.
Chiu H.T., Hubbard B.K., Shah A.N., Eide J., Fredenburg R.A., Walsh C.T., Khosla C. Molecular cloning and sequence analysis of the complestatin biosynthetic gene cluster. Proc. Natl. Acad. Sci. U. S. A. 2001. Vol. 98. P. 8548–8553. doi: 10.1073/pnas.151246498.
Park O.K., Choi H.Y., Kim G.W., Kim W.G. Generation of new complestatin analogues by heterologous expression of the complestatin biosynthetic gene cluster from Streptomyces chartreusis AN1542. ChemBioChem. 2016. Vol. 17. P. 1725–1731. doi: 10.1002/cbic.201600241.
Waglechner N., McArthur A.G., Wright G.D. Phylogenetic reconciliation reveals the natural history of glycopeptide antibiotic biosynthesis and resistance. Nat. Microbiol. 2019. Vol. 4. P. 1862–1871. doi: 10.1038/s41564-019-0531-5.
Medema M.H., Takano E., Breitling R. Detecting sequence homology at the gene cluster level with multigeneblast. Mol. Biol. Evol. 2013. Vol. 30. P. 1218–1223. doi: 10.1093/molbev/mst025.
Blin K., Shaw S., Kloosterman A.M., Charlop-Powers Z., Van Wezel G.P., Medema M.H., Weber T. AntiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021. Vol. 49. P. W29–W35. doi: 10.1093/nar/gkab335.
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018. Vol. 35. P. 1547–1549. doi: 10.1093/molbev/msy096.
Jones D.T., Taylor W.R., Thornton J.M. The rapid generation of mutation data matrices from protein sequences. Bioinformatics 1992. Vol. 8. P. 275–282. doi: 10.1093/bioinformatics/8.3.275.
Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C. et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012. Vol. 28. P. 1647–1649. doi: 10.1093/bioinformatics/bts199.