Comparison of methods of DNA extraction from herbarium specimens of little-pod false flax (Camelina microcarpa Andrz. Ex Dc.)

  • V. H. Sakharova Institute of Food Biotechnology and Genomics, Nat. Acad. Sci. of Ukraine, Ukraine, 04123, Kyiv, Osypovskogo str., 2a
  • R. Ya. Blume Institute of Food Biotechnology and Genomics, Nat. Acad. Sci. of Ukraine, Ukraine, 04123, Kyiv, Osypovskogo str., 2a; Educational and Scientific Center "Institute of Biology and Medicine", Taras Shevchenko National University of Kyiv, Ukraine, 03022, Kyiv, Academika Glushkova ave., 2
  • A. M. Rabokon nstitute of Food Biotechnology and Genomics, Nat. Acad. of Sci. of Ukraine, Ukraine, 04123, Kyiv, Оsypovskoho str., 2A https://orcid.org/0000-0002-6249-1824
  • Ya. V. Pirko Institute of Food Biotechnology and Genomics, Nat. Acad. of Sci. of Ukraine, Ukraine, 04123, Kyiv, Оsypovskoho str., 2A https://orcid.org/0000-0003-1887-5406
  • Ya. B. Blume Institute of Food Biotechnology and Genomics, Nat. Acad. of Sci. of Ukraine, Ukraine, 04123, Kyiv, Оsypovskoho str., 2A https://orcid.org/0000-0001-7078-7548
Keywords: Camelina microcarpa Andrz. ex DC., little-pod false flax, DNA isolation, herbarium specimens

Abstract

Aim. The aim of this research was to compare the efficiency of DNA isolation methods from herbarium specimens of Camelina microcarpa Andrz. Ex DC., further modification of these methods to increase DNA yield, and determine the method that would provide the best yield of isolated DNA. Methods. Modifications of the DNA isolation methods using the DNeasy Plant Mini Kit (QIAgen) and the CTAB method were used. PCR was performed using degenerate primers for method of β-tubulin intron length polymorphism (TBP). Amplicons were fractionated in polyacrylamide gel followed by visualization by silver nitrate staining. Results. DNA was successfully extracted from C. microcarpa herbarium specimens sampled with leaf parts and seeds, using the modified by CTAB method, and four modified methods using DNeasy Plant Mini Kit (QIAgen). Conclusions. The study revealed that the most effective method tested was the DNeasy Plant Mini Kit (QIAgen) No. 2. Prolongation of the cell lysis stage had the best effect on the increase of DNA yield. We found that the success of DNA isolation was influenced not so much by the age of the herbarium specimen as by the methods of drying and storing the plants in the collection.

References

Brock J.R., Scott T., Lee A.Y., Mosyakin S.L., Olsen K.M. Interactions between genetics and environment shape Camelina seed oil composition. BMC Plant Biol. 2020. Vol. 20 (1). P. 1–15. doi: 10.1186/s12870-020-02641-8.

Brock J.R., Dönmez A.A., Beilstein M.A., Olsen K.M. Phylogenetics of Camelina Crantz. (Brassicaceae) and insights on the origin of gold-of-pleasure (Camelina sativa). Mol. Phylogenet. Evol. 2018. Vol. 127. P. 834–842. doi: 10.1016/j.ympev.2018.06.031.

Andreasen K., Manktelow M., Razafimandimbison S.G. Successful DNA amplification of a more than 200‐year‐old herbarium specimen: recovering genetic material from the Linnaean era. Taxon. 2009. Vol. 58 (3). P. 959–962. doi: 10.1002/tax.583023.

Telle S., Thines M. Amplification of cox2 (~ 620 bp) from 2 mg of up to 129 years old herbarium specimens, comparing 19 extraction methods and 15 polymerases. PLoS One. 2008. Vol. 3 (10). P. e3584. doi: 10.1371/journal.pone.0003584.

Staats M., Cuenca A., Richardson J. E., Vrielink-van Ginkel R., Petersen G., Seberg O., Bakker F.T. DNA damage in plant herbarium tissue. PLoS One. 2011. Vol. 6 (12). P. e28448. doi: 10.1371/journal.pone.0028448.

Srinivansan M., Sedmak D., Jewell S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am. J. Pathol. 2002. Vol. 161 (6). P. 1961–1971. doi: 10.1016/S0002-9440(10)64472-0.

Pääbo S., Poinar H., Serre D., Jaenicke-Despres V., Hebler J., et al. Genetic analyses from ancient DNA. Annu. Rev. Genet. 2004. Vol. 38. P. 645–679. doi: 10.1146/annurev.genet.37.110801.143214.

Stiller M., Green R.E., Ronan M., Simons J.F., Du L., et al. Patterns of nucleotide misincorporations during enzymatic amplifica-tion and direct largescale sequencing of ancient DNA. Proc. Natl Acad. Sci. USA. 2006. Vol. 103. P. 13578–13584. doi: 10.1073/pnas.0605327103.

Drábková L.Z. DNA extraction from herbarium specimens. In: Besse P. (ed.). Molecular Plant Taxonomy: Methods and Proto-cols. New York: Springer, 2014. [Methods in Molecular Biology series. Vol. 1115. P. 69–84. doi: 10.1007/978-1-62703-767-9_4.

Bardini M., Lee D., Donini P., Mariani A., Giani S., Toschi M., Lowe C., Breviario D. Tubulin-based polymorphism (TBP): a new tool, based on functionally relevant sequences, to assess genetic diversity in plant species. Genome. 2004. Vol. 47. P. 281–291.

Blume R.Y., Rabokon’ A.M., Postovoitova A.S., Demkovich A.Ye., Pirko Ya.V., Yemets A.I., Rakhmetov D.B., Blume Ya.B. Evaluating the diversity and breeding prospects of Ukrainian spring camelina genotypes. Cytol. Genet. 2020. Vol. 54 (5). P. 420–436.

Drábková L., Kirschner J., Vlček Č. Comparison of seven DNA extraction and amplification protocols in historical herbarium specimens of Juncaceae. Plant Mol. Biol. Rep. 2002. Vol. 20 (2). P. 161–175. doi: 10.1007/BF02799431.

Zviahin A.S. Extraction of DNA from herbarium leaves of Vitis vinifera L. Polythematic Network Electronic Sci. J. Kuban State Agr. Univ. 2010. Vol. (58). P. 436–447. [in Russian]

Lambertini C., Frydenberg J., Gustafsson M.H.G., Brix H. Herbarium specimens as a source of DNA for AFLP fingerprinting of Phragmites (Poaceae): possibilities and limitations. Plant Syst. Evol. 2008. Vol. 272 (1). P. 223–231. doi: 10.1007/s00606-007-0633-z.

Costa C.M., Roberts R.P. Techniques for improving the quality and quantity of DNA extracted from herbarium specimens. Phy-toneuron. 2014. Vol. 2014–2048. P. 1–8. Retrieved from: https://www.biodiversitylibrary.org/item/177125#page/1/mode/1up.

Marincek P., Wagner N.D., Tomasello S. Using herbarium samples for NGS methods – a methodological comparison. bioRxiv. 2021. doi: 10.1101/2021.08.26.457828.