Antagonistic and plant growth promoting activities of rhizosferic actinomycetes from Thymus roegneri K. Koch aggr.

  • O. M. Gromyko Ivan Franko National University of L’viv, Ukraine, 79005, L’viv, Grushevskogo str., 4
  • S. I. Tistechok Ivan Franko National University of L’viv, Ukraine, 79005, L’viv, Grushevskogo str., 4
  • V. I. Chornobai Ivan Franko National University of L’viv, Ukraine, 79005, L’viv, Grushevskogo str., 4
  • V. O. Fedorenko Ivan Franko National University of L’viv, Ukraine, 79005, L’viv, Grushevskogo str., 4


Aim. Actinomycetes as a source of biologically active compounds have broad potential of biotechnology, particularly in creating bioproducts to protect and plant growth promotion. The aim of this work was investigation of antagonistic and plant growth promotion properties of the actinomycete strains from Thymus roegneri K. Koch. aggr. rhizosphere. Methods. Microbiological and genetic methods for investigation of the ability to synthesize antibiotic substances, plant hormones and other molecules. Results. We isolated 91 isolates and studied their antimicrobial properties against a wide range of phytopathogenic bacteria and fungi. About 70 % isolates inhibited the growth at least one of the used test-cultures. Antifungal activity was observed in 20 % isolates. In the collection was found 7 isolates with a wide range of antagonistic properties, and one strain was an antagonist to all used test-cultures. We found 45 % IAA, 23 strains of siderophore producers and 6 isolates were able to solubilize phosphates. Conclusions. Actinomycetes with a broad spectrum antimicrobial properties and growth promotion can be found in the T. roegneri K. Koch aggr. rhizosphere. The selected isolates were a source of new genes that control the biosynthesis of antibiotics, phytohormones and other bioactive molecules.

Keywords: actinomycetes, biocontrol, plant growth promoting.


Bacteria in Agrobiology: Plant Nutrient Management. Ed. Dinesh K. Maheshwari. Berlin: Springer, 2011. 345 p.

Aktar Md.W., Sengupta D., Chowdhuru A. Impact of pesticides use in agriculture: their benefits and hazards. Interdisc Toxicol. 2009. V. 2 (1). P. 1-12. doi: 10.2478/v10102-009-0001-7

Da Silva Sousa C., Fermino Soares A., da Silva Garrido M. Characterization of Streptomyces with potential to promote plant growth and biocontrol. Sci. Agri. 2008. V. 65. P. 50-55. doi: 10.1590/S0103-90162008000100007

Grasso L., Martino D., Alduina R. Production of Antibacterial Compounds from Actinomycetes. In: Actinobacteria - Basics and Biotechnological Applications / Ed. Dharumadurai Dhanasekaran and Yi Jiang. InTech. 2016. P. 177-198. doi: 10.5772/61525

Sreevidyaa M., Gopalakrishnanb S., Kudapab H., Varshney R.K. Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea. Braz. J microb. 2016. V. 47. P. 85-95. doi: 10.1016/j.bjm.2015.11.030

Sousa J., Olivares F. Plant growth promotion by streptomycetes: ecophysiology, mechanisms and applications. Chem. Biol. Technol. Agric. 2016. V. 3 (24). P. 1-12. doi: 10.1186/s40538-016-0073-5

Khamna S., Yokota A., Lumyong S. Actinomycetes isolated from medicinal plant rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microb. Biotech. 2009. V. 25. P. 649-655. doi: 10.1007/s11274-008-9933-x

Khlypenko L., Rabotiagov V., Marko N. Introduktsiia Thymus roegneri K. Koch aggr. v Nikitskom botanicheskom sadu. Chornomors'k. bot. zh. 2014. No. 10 (3). P. 402-407. [in Russian] doi: 10.14255/2308-9628/14.103/12

Bnyan I., Abid A., Obied H. Antibacterial activity of carvacrol against different types of bacteria. J Nat. Scie. Res. 2014. V. 4, No. 9. P. 13-16.

Braga P. Thymol: antibacterial, antifungal and antioxidant activities. Giorn. It. Ost. Gin. 2005. V. 27 (7-8). P. 263-268.

Zenova G.M. Pochvennye aktinomitsety: uchebnoe posobie. M.: Izd-vo MGU, 1992. 79 p. [in Russian]

Gauze G.F., Preobrazhenskaia T.P., Sveshnikova M.A., Terekhova L.P., Maksimova T.S. Opredelitel' aktinomitsetov. Rod Streptomyces. M: Nauka, 1983. 245 p. [in Russian]

Zhang J. Improvement of an isolation medium for actinomycetes. Modern App. Sci. 2011. V. 5(2). P. 124-127. doi: 10.5539/mas.v5n2p124

Kieser T., Bibb M., Buttner M., Chater K., Hopwood D. Practical Streptromyces genetics. Norwich: John Innes Foundation. 2000. 634 p.

Sarwar M., Kremer R.J. Determination of bacterially derived auxins by a microplate method. Lett. Appl. Microbiol. 1995. V. 20. P. 282-285. doi: 10.1111/j.1472-765X.1995.tb00446.x

Verma V., Joshi K., Mazumdar B. Study of siderophore formation in nodule-forming bacterial species. Res. J Chem. Scie. 2012. V. 2 (11). P. 26-29.

Muromtsev G.S. Some methods for studying the dissolution of calcium phosphates by microorganisms. Microbiologiya. 1957. V. 26. P. 172-178.

Khamna S., Yokota A., Peberdy J.F., Lumyong S. Indole-3-acetic acid production by Streptomyces sp. isolated from some Thai medicinal plant rhizosphere soils. 2010. Eurasia J. BioSci. V. 4. P. 23-32. doi: 10.5053/ejobios.2010.4.0.4

Hromyko O. Antahonistychni vlastyvosti aktynomitsetiv prykorenevoi zony maslyny ievropeys'koi Olea europaea L.. Visnyk L'vivs'koho un-tu. Seriia biolohichna. 2012. No. 59. P. 209-215. [in Ukrainian]

Raju R., Gromyko O., Fedorenko V., Luzhetskyy A., Muller R. Oleaceran: A novel spiro[isobenzofuran-1,2'-naptho[1,8-bc]furan] isolated from a terrestrial Streptomyces sp. Organic Lett. 2013. V. 15(14). P. 3487-3489. doi: 10.1021/ol401490u