Cytogenetic analysis of 2554 samples of the products of conception from early reproductive losses

  • I. R. Tkach State Institution «Institute of Hereditary Pathology of the National Academy of Medical Sciences of Ukraine», Ukraine, 79008, Lviv, M. Lysenko str., 31a https://orcid.org/0000-0002-8370-6935
  • N. L. Huleyuk State Institution «Institute of Hereditary Pathology of the National Academy of Medical Sciences of Ukraine», Ukraine, 79008, Lviv, M. Lysenko str., 31a https://orcid.org/0000-0001-7697-4117
  • D. V. Zastavna State Institution «Institute of Hereditary Pathology of the National Academy of Medical Sciences of Ukraine», Ukraine, 79008, Lviv, M. Lysenko str., 31a https://orcid.org/0000-0002-3858-7180
  • G. M. Bezkorovaina State Institution «Institute of Hereditary Pathology of the National Academy of Medical Sciences of Ukraine», Ukraine, 79008, Lviv, M. Lysenko str., 31a https://orcid.org/0000-0002-1940-9928
  • N. V. Helner State Institution «Institute of Hereditary Pathology of the National Academy of Medical Sciences of Ukraine», Ukraine, 79008, Lviv, M. Lysenko str., 31a
  • O. V. Benko Municipal non-profit enterprise "3rd city clinical hospital of Lviv", Ukraine, 79000, Lviv, Rusovykh str, 4
Keywords: early reproductive loss, chorionic villi, chromosomal abnormalities

Abstract

Aim. Early pregnancy losses (EPL), to some extent, can be considered a mechanism of natural selection that prevents the development of defective fetuses, since it is believed that even up to 80 % of the causes have genetic disorders. Among the genetic factors of EPL karyotype disorders should be included first of all. Overall, up to 50 % of early miscarriages are caused by karyotype abnormalities. The purpose of this study was studied the contribution of chromosomal abnormalities to the genesis of EPL. Methods. Banding cytogenetic and interphase mFISH with the centromeric probe panel for chromosomes 13, 14, 15, 16, 17, 18, 20, 21, 22, X and Y were used. Results. Were examined 2554 cases of material of early reproductive loss. A normal karyotype was established in 1638 cases (64.1 %), and a pathological karyotype in 916 (35.9 %). Karyotype abnormalities are as follows: autosomal aneuploidy – 478 (52.2 %), polyploidy – 256 (27.9 %), gonosomal aneuploidy – 182 (19.9 %). Conclusions. Among autosomal aneuploidies prevailed trisomy 16 (26.9 %), among polyploidy – triploidy (24.6 %) and among gonosomal aneuploidy – monosomy X (18.4 %).

References

Warburton D. Cytogenetics of reproductive wastage: from conception to birth. In Mark, H.F.L. (ed.). Medical Cytogenetics. 2000. P. 213–246.

Van den Berg M. M., van Maarle M. C., van Wely M., Goddijn M. Genetics of early miscarriage. Biochim Biophys Acta. 2012. Vol. 1822. P. 1951−1959. doi: 10.1016/j.bbadis.2012.07.001.

Goddijn M., Leschot N. J. Genetic aspects of miscarriage. Baillieres Best Pract Res Clin Obstet Gynaecol. 2000. Vol. 14 (5). P. 855–865. doi:10.1053/beog.2000.0124

Jurkovic D., Overton C., Bender-Atik R. Diagnosis and management of first trimester miscarriage. BMJ. 2013. Vol. 346. f3676. doi: 10.1136/bmj.f3676.

Gimovsky A. C., Pham A., Moreno S. C. et al. Genetic abnormalities seen on CVS in early pregnancy failure. J Matern Fetal Neonatal Med. 2018. Vol. 31. doi: 10.1080/14767058.2018.1542677.

Pylyp L. Y., Spynenko L. O., Verhoglyad N. V. et al. Chromosomal abnormalities in products of conception of first-trimester miscarriages detected by conventional cytogenetic analysis: a review of 1000 cases. J Assist Reprod Genet. 2018. Vol. 35 (2). P. 265–271. doi: 10.1007/s10815-017-1069-1.

Menasha J., Levy B., Hirschhorn K., Kardon N. B. Incidence and spectrum of chromosome abnormalities in spontaneous abortions: New insights from a 12-year study. Genet Med. 2005. Vol. 7. P. 251–263. doi: 10.1097/01.gim.0000160075.96707.04.

Dória S., Carvalho F., Ramalho C. et al. An efficient protocol for the detection of chromosomal abnormalities in spontaneous miscarriages or foetal deaths. Eur J Obstet Gynecol Reprod Biol. 2009. Vol. 147. P. 144–150. doi: 10.1016/j.ejogrb.2009.07.023.

Eiben B., Bartels I., Bähr-Porsch S. et al. Cytogenetic analysis of 750 spontaneous abortions with the direct preparation method of chorionic villi and its implications for studying genetic causes of pregnancy wastage. Am J Hum Genet. 1990. Vol. 47. P. 656–663.

Soler A., Morales C., Mademont-Soler I. et al. Overview of Chromosome Abnormalities in First Trimester Miscarriages: A Series of 1,011 Consecutive Chorionic Villi Sample Karyotypes. Cytogenetic and Genome Research. 2017. Vol. 152 (2). P. 81–89. doi: 10.1159/000477707.

Simpson J. L. Genetics of spontaneous abortion. W: Recurrent pregnancy loss. Causes, controversies and treatment (red. HJA Carp). Informa Healthcare, London. 2007. P. 23–34.

Kalousek D. K., Lau A. E. Pathology of spontaneous abortion. W: Developmental pathology of the embryo and fetus. Red. J. E., Dimmick D. K., Kalosuek. J B Lippincott Company, Filadelfia, 1992. Hum Genet. 2004. Vol. 49 (7). P. 396−397.

Banzai M., Sato S., Matsuda H., Kanasugi H. Trisomy 1 in a case of a missed abortion. J Hum Genet. 2004. Vol. 49 (7). P. 396−397.

Jacobs P. A., Hassold T. J. The Origin of Numerical Chromosome Abnormalities. Advances in Genetics. 1995. P. 101–133.

Griffin D. K. The Incidence, Origin, and Etiology of Aneuploidy. International Review of Cytology. 1996. P. 263–296.

Egozcue S., Blanco J., Vendrell J. M. et al. Human male infertility: chromosome anomalies, meiotic disorders, abnormal spermatozoa and recurrent abortion. Hum Reprod Update. 2000. Vol. 6 (1). P. 93–105.

Tartaglia N. R., Howell S., Sutherland A. et al. A review of trisomy X (47,XXX). Orphanet J Rare Dis. 2010. Vol. 5. P. 8. doi: 10.1186/1750-1172-5-8.

Tobias E. S., Connor M., Ferguson-Smith M. Essential Medical Genetics. Wiley-Blackwel. 2011. 6 th Edition. P. 332.