Structural profile of ligand-based inhibition of bacterial FtsZ

Keywords: FtsZ, Z-ring, bacteria, inhibitors, ligand, binding site


Aim. The idea of the study was to compare and generalize RCSB Protein Data Bank and ChEMBL data in order to establish the structural and biological relationship of experimentaly proved effectors of FtsZ with binding sites. Methods. Literature and database search. Comparison of protein and ligand structures. Protein structure modeling, MD, structural superimposition, etc. Results. The experimental protein-ligand complexes structures of bacterial FtsZ were revised. The structural superimposition of experinental PDB and full-atomic AlphaFold2 models of bacterial FtsZs confirmed their significant structural similarity. Three protein-ligand binding sites were identified by structural alignment. The rating based on database (RCSB Protein Data Bank, ChEMBL, DrugBank, BindingDB, PubChem), patente and literature information on FtsZ-ligand interactions identify perspective sites and main reference compounds. Сonclusions. It was identifyd 3 main protein-ligand binding regions in FtsZ: I. Nucleotide Binding Domain (Ia. Site of GTP/GDP and Ib. MB3 site); II. Site of inter-domain cleft (IDC) and III. Site of coumarin bindig (4HC = 4-hydroxycoumarin). It was indicated that benzamide-binding site, located in the region of inter-domain cleft of FtsZ, demonstrate highest site- and target-specificity.


Bi E. F., Lutkenhaus J. FtsZ ring structure associated with division in Escherichia coli. Nature. 1991. Vol. 354 (6349). P. 161–164. doi: 10.1038/354161a0.

Wang M., Fang C., Ma B., Luo X., Hou Z. Regulation of cytokinesis: FtsZ and its accessory proteins. Curr Genet. 2020. Vol. 66 (1). P. 43–49. doi: 10.1007/s00294-019-01005-6.

Du S., Lutkenhaus J. At the Heart of Bacterial Cytokinesis: The Z Ring. Trends Microbiol. 2019. Vol. 27(9). P. 781–791. doi: 10.1016/j.tim.2019.04.011.

Pradhan P., Margolin W., Beuria T. K. Targeting the Achilles Heel of FtsZ: The Interdomain Cleft. Front Microbiol. 2021. Vol. 12. P. 732–796. doi: 10.3389/fmicb.2021.732796.

Löwe J. Crystal structure determination of FtsZ from Methanococcus jannaschii. J Struct Biol. 1998. Vol. 124 (2–3). P. 235–243. doi: 10.1006/jsbi.1998.4041.

Sun N., Chan F. Y., Lu Y. J., Neves M. A., Lui H. K., Wang Y., Chow K. Y., Chan K. F., Yan S. C., Leung Y. C., Abagyan R., Chan T. H., Wong K. Y. Rational design of berberine-based FtsZ inhibitors with broad-spectrum antibacterial activity. PloS One. 2014. Vol. 9 (5). e97514. doi: 10.1371/journal.pone.0097514.

Casiraghi A., Suigo L., Valoti E., Straniero V. Targeting Bacterial Cell Division: A binding site-centered approach to the most promising inhibitors of the essential protein FtsZ. Antibiotics (Basel). 2020. Vol. 9 (2). P. 69. doi: 10.3390/antibiotics9020069.

Miguel A., Hsin J., Liu T., Tang G., Altman R. B., Huang K. C. Variations in the binding pocket of an inhibitor of the bacterial division protein FtsZ across genotypes and species. PLoS Comput Biol. 2015. Vol. 11 (3). e1004117. doi: 10.1371/journal.pcbi.1004117.

Läppchen T., Pinas V. A., Hartog A. F., Koomen G. J., Schaffner-Barbero C., Andreu J. M., Trambaiolo D., Löwe J., Juhem A., Popov A. V., den Blaauwen T. Probing FtsZ and tubulin with C8-substituted GTP analogs reveals differences in their nucleotide binding sites. Chem. biol. 2007. Vol. 15 (2). P. 189–199. doi: 10.1016/j.chembiol.2007.12.013.

Veselinović A. M., Toropov A., Toropova A., Stanković-Đorđević D., Veselinović J. B. Design and development of novel antibi-otics based on FtsZ inhibition – in silico studies. New J. Chem. 2018. Vol. 42 (13). P. 10976–10982. doi: 10.1039/c8nj01034j.

Stokes N. R., Sievers J., Barker S., Bennett J. M., Brown D. R., Collins I., Errington V. M., Foulger D., Hall M., Halsey R., Johnson H., Rose V., Thomaides H. B., Haydon D. J., Czaplewski L. G., Errington J. Novel inhibitors of bacterial cytokinesis identified by a cell-based antibiotic screening assay. J Biol Chem. 2005. Vol. 280 (48). P. 39709–39715. doi: 10.1074/jbc.M506741200.

Ruiz-Avila L. B., Huecas S., Artola M., Vergoñós A., Ramírez-Aportela E., Cercenado E., Barasoain I., Vázquez-Villa H., Mar-tín-Fontecha M., Chacón P., López-Rodríguez M. L., Andreu J. M. Synthetic inhibitors of bacterial cell division targeting the GTP-binding site of FtsZ. ACS Chem Biol. 2013. Vol. 8 (9). P. 2072–2083. doi: 10.1021/cb400208z.

Kim S., Chen J., Cheng T., Gindulyte A., He J., He S., Li Q., Shoemaker B. A., Thiessen P. A., Yu B., Zaslavsky L., Zhang J., Bolton E. E. PubChem 2023 update. Nucleic Acids Res. 2023. Vol. 51 (D1). P.1373–1380. doi: 10.1093/nar/gkac956.

Wishart D. S., Feunang Y. D., Guo A. C., Lo E. J., Marcu A., Grant J. R., Sajed T., Johnson D., Li C., Sayeeda Z., Assempour N., Iynkkaran I., Liu, Y., Maciejewski A., Gale N., Wilson A., Chin L., Cummings R., Le D., Pon A., Wilson M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018. Vol. 46 (D1). D1074–D1082. doi: 10.1093/nar/gkx1037.

Gilson M. K., Liu T., Baitaluk M., Nicola G., Hwang L., Chong J. BindingDB in 2015: A public database for medicinal chemis-try, computational chemistry and systems pharmacology. Nucleic Acids Res. 2016. Vol. 44 (D1). P. 1045–1053. doi: 10.1093/nar/gkv1072.

Davies M., Nowotka M., Papadatos G., Dedman N., Gaulton A., Atkinson F., Bellis L., Overington J. P. ChEMBL web services: streamlining access to drug discovery data and utilities. Nucleic Acids Res. 2015. Vol. 43 (W1). P. 612–620. doi: 10.1093/nar/gkv352.

The UniProt Consortium UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Research. 2023. Vol. 51. P. 523–531. doi: org/10.1093/nar/gkac1052.

Oliva M. A., Trambaiolo D., Löwe J. Structural insights into the conformational variability of FtsZ. J Mol Biol. 2007. Vol. 373 (5). P. 1229–1242. doi: 10.1016/j.jmb.2007.08.056.