Research of descendants of transgenic plants Triticum aestivum L. with partial suppression of the prolinde hydrogenase gene

  • A. G. Komisarenko Institute of Plant Physiology and Genetics of NAS of Ukraine, Ukraine, 03022, Кyiv, Vasylkivska str., 31/17 https://orcid.org/0000-0003-2081-4055
  • S. I. Mykhalska Institute of Plant Physiology and Genetics of NAS of Ukraine, Ukraine, 03022, Кyiv, Vasylkivska str., 31/17
Keywords: winter wheat, transgenic plants, proline, osmotic resistance, structural analysis of yield

Abstract

Aim. To investigate the level of tolerance to water deficit of seed generations (T1 and T4) of genetically modified winter wheat with partially suppressed expression of the proline dehydrogenase gene (ProDH) based on the analysis of physiological and biochemical indicators and economic characteristics of plants. Methods. Determination of indicators of crop structure and content of free L-proline (Pro). Results. The level of Pro was studied and the main elements of productivity in the offspring of transgenic plants and their original forms under normal and insufficient water supply were analyzed. Conclusions. T1 and T4 biotechnological plants under normal/stress conditions accumulated more Pro than the original genotypes. The level of this amino acid in genetically modified seedlings under optimal cultivation conditions exceeded the initial forms by an average of 1.8 times. Under the influence of water deficit, its content increased by 2.2 and 2.3 times, in relation to normal water supply. In non-transgenic variants, the level of Pro, under similar growing conditions, was lower by 1.9 and 2.0 times, compared to T1 and T4 plants. Under the optimal water regime, the analyzed wheat variants did not differ significantly in terms of productivity. Drought led to their decrease, but the offspring of biotechnological plants were characterized by a less pronounced difference, as well as a higher yield.

References

Hossain A., Skalicky M., Brestic M., Maitra S., Ashraful Alam M., Syed M. A., Hossain J., Sarkar S., Saha S., Bhadra P., Shankar T., Bhatt R., Kumar C. A., EL Sabagh A., Islam T. Consequences and Mitigation Strategies of Abiotic Stresses in Wheat (Triticum aestivum L.) under the Changing Climate. Agronomy. 2021. Vol. 11 (2). Р. 241. doi: 10.3390/agronomy11020241.

Khan M. S., Ahmad D., Khan M. A. Utilization of genes encoding osmoprotectants in transgenic plants for enhanced stress tolerance. Electron J Biotechn. 2015. Vol. 18. Р. 257–266. doi: 10.1016/j.ejbt.2015.04.002.

Hiei Y., Ishida Y., Komari T. Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Front Plant Science. 2014. Vol. 5. Р. 628. doi: 10.3389/fpls.2014.00628.

Joshi R., Anwar K., Das P., Sneh L. S.-P. Overview of Methods for Assessing Salinity and Drought Tolerance of Transgenic Wheat Lines. In Wheat Biotechnology; Springer: New York, NY, USA. 2017. Vol. 1679. Р. 83–95. doi: 10.1007/978-1-4939-7337-8_5.

Mykhalska S. I., Komisarenko A. G., Kurchii V. M. Genes of proline metabolism in biotechnology of increasing wheat osmostability. Factors of experimentation evolution of organism. 2021. Vol. 28. Р. 94–99. doi: 10.7124/FEEO.v28.1382. [in Ukrainian]

Dubrovna O. V., Mykhalska S. I., Komisarenko A. G. Using of proline metabolism genes in plant genetic engineering. Cytology and Genetics. 2022. Vol. 56 (4). Р. 361–378. doi: 10.3103/S009545272204003X. [in Ukrainian]

Slama I., Abdelly C., Bouchereau A., Flowers T., Savouré A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann Bot. Feb. 2015. Vol. 115 (3). Р. 433–447. doi: 10.1093/aob/mcu239.

Kolupaev Yu. E., Vainer A. A., Yastreb T. O. Proline: physiological functions and regulation of the content in plants under stress conditions Newsletter. Kharkiv. nat. agrarian. un-tu. Ser. Biol. 2014. Vol. 2 (32). P. 6–22. Retrieved from: https://repo.btu.kharkov.ua//handle/123456789/9047. [in Russian]

Morgun B. V., Tishchenko E. N. Molecular biotechnology to improve the resistance of cultivated cereals to osmotic stress. Kyiv : Logos, 2014. 219 p. [in Russian]

Sergeeva L. E., Mykhalska S. I., Komisarenko A. G. Modern biotechnologies for increasing plant resistance to osmotic stresses. Kyiv : Kondor, 2019. 160 p. [in Russian].

Moiseeva E. M., Agaponov D. A., Veshkov V. A. Elevated proline content in maize expressing a fragment of the proline dehydrogenase gene in antisense orientation. Plant Physiology. 2012. Vol. 59 (3). Р. 457–460. [in Russian]

Mansour M. M. F., Ali E. F. Evaluation of proline functions in saline conditions. Phytochemistry. 2017. Vol. 140. Р. 52–68. doi: 10.1016/j.phytochem.2017.04.016.

Andriushchenko V. K., Sayanova V. V., Zhuchenko A. A., Diyachenko N. I., Chilikina L. A., Drozdov V. V., Korochkina S. K., Cherep G. I., Medvedev V. V., Niutin Yu. I. The modification of proline estimation method for detection drought tolerant forms of genus Lycopersicon Tourn. Izv. Akad. Nauk Mold. SSR. 1981. Vol. 4. P. 55–60. [in Russian]

Bengough A. G., McKenzie B. M., Hallett P. D., Valentine T. A. Root Elongation, Water Stress, and Mechanical Impedance: A Review of Limiting Stresses and Beneficial Root Tip Traits. Journal of Experimental Botany. 2011. Vol. 62. P. 59–68. doi: 10.1093/jxb/erq350