Modern technologies of increasing the tolerance of in vitro cultured plants to ex vitro conditions
Abstract
Aim. To analyze the experience of Ukrainian and foreign scientists on technologies to increase the adaptive potential of cultivated in vitro plants to ex vitro conditions. Results. Modern acclimatization technologies are mainly aimed at improving the methods of adaptation of planting material of in vitro collections to ex vitro conditions. Much less attention is paid to technologies to increase plant resilience at the stage of their multiplication and growth in vitro. Integration and systematization of research results of a large number of scientists is allowed to describe the main strategies and methodological techniques, which implementation can significantly increase the adaptive potential of in vitro plants. Conclusions. Optimization of physical and chemical conditions of plant cultivation in vitro can induce changes in their phenotype, intensity of photosynthetic reactions, water balance, which increases the adaptive potential of plants and facilitates the process of their acclimatization to ex vitro conditions.
Key words: in vitro plants, acclimatization to ex vitro conditions, adaptive potential, technology.
References
Medvedyeva T.M. Problemy aklimatyzatsiyi kul'tyvovanykh in vitro roslyn. Fyzyolohyya y byokhymyya kul'turnykh rastenyy. 2008. Vol. 40 (1). P. 299–309 [in Ukrainian]
Clapa D., Fira A., Joshee N. An Efficient Ex Vitro Rooting and Acclimatization Method for Horticultural Plants Using Float Hydroculture. Horticultural Science. 2013. Vol. 48 (9). P. 1159–1167.
Ubalua A. O, Okoroafor U. E. Micropropagation and postflask management of sweet potato using locally available materials as substrates for hardening. Plant Knowledge Journal. 2013. Vol. 2(2). P. 56–61. Accessed from: http://www.sciencej.com/alfred_2_2_2013_56_61.pdf
Kodun-Ivanova M.A. Indicators of water-stress of microclonal aspen Populus tremula to the ex vitro conditions. Trudy BHTU. 2017. Sеr. 1, No. 2. P. 146–155 [in Russian]
Ubalua A. O., Nsofor G. C. The role of supporting substrates in ex vitro acclimatization and growth of tissue cultured cassava plantlets. Plant Knowledge Journal. 2017. Vol. 6 (1). P. 1–6. doi: 10.21475/pkj.06.01.17.p7910
Ivanova-Khanina L.V. Influence the composition of substrate on survival rate of microplants of Vitis vinifera L. in vivo. Ekosystemy. 2018. Vol. 13 (43). P. 84–88 [in Russian]
Isah T. Adjustments to in vitro culture conditions and associated anomalies in plants. Acta biologica Cracoviensia. Series Botanica. 2015. Vol. 57(2). P. 9–28. doi: 10.1515/abcsb-2015-0026
da Silva T. J. A., Hossain M. ., Sharma M. et al. Acclimatization of in vitro-derived Dendrobium. Horticultural Plant Journal. 2017. Vol 3 (3). P. 110–124. doi: 10.1016/j.hpj.2017.07.009
Batista D. S., Felipe S. H. S., Silva T. D. et al. Light quality in plant tissue culture: does it matter? In Vitro Cellular & Developmental Biology - Plant. 2018. Vol. 54 (3). P. 195–215. doi.: 10.1007/s11627-018-9902-5
Hazarika B. N., Bora A. Use of bio-agents in acclimatizing micropropagated plants - a review. Agricultural Reviews. 2006. Vol. 27 (2). P. 152–156.
Eckstein A., Zieba P., Gabrys H. Sugar and light effects on the condition of the photosynthetic apparatus of Arabidopsis thaliana cultured in vitro. Journal of Plant Growth Regulation. 2012. Vol. 31 (1). Р. 90–101
Gago J., Martínez-Núñez L., Landín M., Flexas J., Gallego P. P. Modeling the Effects of Light and Sucrose on In Vitro Propagated Plants: A Multiscale System Analysis Using Artificial Intelligence Technology. PLoS ONE. 2014. 9, e85989. doi: 10.1371/journal.pone.0085989
Trejgell A., Tretyn A. Shoot multiplication and in vitro rooting of Carlina onopordifolia Basser. Acta Biologica Cracoviensia. Series Botanica. 2011. Vol. 53 (2). P. 68–72. doi: 10.2478/v10182-011-0026-z
Vechernyna N.A., Tavartkyladze O.K., Borodulyna Y.D., Erst A.A. Adaptatsiya rasteniy-rehenerantov k usloviyam vyrashchivaniya ex vitro. Sovremennye tendentsii razvitiya promyshlennoho sadovodstva : materialy nauch.-prakt. konf., posvyashch. 75-letiyu obrazovaniya NII sadovodstva Sybiri imeni M. A. Lisavenko (Barnaul, 18-23 avh. 2008). Barnaul, 2008. P. 355–360 [in Russian]
Sheela C., Rajib B., Vijay K., Ramesh C. Acclimatization of tissue cultured plantlets: from laboratory to land. Biotechnology Letters. 2010. Vol. 32. P. 1199–1205. doi: 10.1007/s10529-010-0290-0.
Ávila-Juárez L., Torres-Pacheco I., Ocampo-Velázquez R. V., Feregrino-Pérez A. A., CruzHernández A., Guevara-González R. G. Integrating plant nutrients and elicitors for production of secondary metabolites, sustainable crop production and human health : A review. International Journal of Agriculture & Biology. 2017. Vol. 19. P. 391‒ 402. doi: 10.17957/IJAB/15.0297
Pykalo S.V., Dubrovna O.V. Tolerance to abiotic stressors of r1 plants of triticale obtained by cell selection. Visnyk Kharkivs'koho natsional'noho ahrarnoho universytetu. Seriya «Biolohiya». 2015. Vol. 3 (36). P. 76–82. [in Ukrainian]
Musienko M.M., Zhuk I.V. Molecular mechanisms of induction of protective plant reactions to drought effect. Ukr. botan. zhurn. 2009. Vol. 66 (4). P. 580–595. [in Ukrainian]
Kolupaev Yu.E., Vayner. A.A., Yastreb T.O. Proline: physiological functions and regulation of its content in plants under stress conditions. Visnyk Kharkivs'koho natsional'noho ahrarnoho universytetu. Seriya «Biolohiya».2014. Vol. 2 (32). P. 6–22 [in Ukrainian]
Bisht S. S., Bisht A. S., Chauhan R. S. In-vitro Mutagenesis Induction to Improve Abiotic Stress in Tissue Cultured Plantlet of Picrohiza kurroa Royle ex. Benth: An Endangered Plant of Western Himalayas. India Medical and Aromatic Plants (Los Angel). 2017. Vol. 6 (2). Article ID: 287. doi: 10.4172/2167-0412.1000287.
Banas A. K., Gabrys H. Influence of sugars on blue light-induced chloroplast relocations. Plant Signaling & Behavior. 2007. Vol. 2 (4). Р. 221–230. doi: 10.4161/psb.2.4.4392
Oliveira L., Cardoso M. N., Oliveira A., Machado C., Cardoso B., Silva A., Lédo A. Effects of in vitro Drought Stress on Growth, Proline Accumulation and Antioxidant Defense in Sugarcane. Journal of Agricultural Science. 2018. Vol 10 (5). P. 135–149. doi: 10.5539/jas.v10n5p135
Xu Y., Huang B. Exogenous Ascorbic Acid Mediated Abiotic Stress Tolerance in Plants. Ascorbic Acid in Plant Growth, Development and Stress Tolerance / Hossain M., Munné-Bosch S., Burritt D., Diaz-Vivancos P., Fujita M., Lorence A. (eds). Springer, Cham, 2017. P. 233–253
Zelenyanska N.M. Antitranspirants for a successful adaptation of grape Microclones. Naukovi dopovidi Natsional'noho universytetu bioresursiv i pryrodokorystuvannya Ukrayiny. 2013. Vol. 2 (38). Accessed from: http://nbuv.gov.ua/UJRN/Nd_2013_2_4 [in Ukrainian]
Li H., Tang C., Xu Z. Effects of different light quality on growth, photosynthetic characteristic and chloroplast ultrastructure of upland cotton (Gossypium hirsutum L.) seedlings. Emirates Journal of Food and Agriculture. 2017. Vol. 29 (2). P. 104–113. doi: 10.9755/ejfa.2016-10-1387
Trivedi A., Sengar R. S. Effect of various light-emittimg diodes on growth and photosynthetic pigments of banana (Musa acuminata) CV. grande naine in vitro plantlets. International Journal of Chemical Studies. 2017. Vol. 5 (5). P. 1819–1821. Accessed from: https://www.researchgate.net/publication/333652559
Hrytsak L.R., Herts A.I., Nuzhyna N.V., Cryk M.M., Shevchenko V.V., Drobyk N.M. The influence of light regime on the growth data and pigment composition of the plant Gentiana lutea L. cultured in vitro. Regulatory Mechanisms in Biosystems. 2018. Vol. 9 (2). P. 258–266 [in Ukrainian]
Muneer S., Kim E. J., Park J. S., Lee J. H. Influence of green, red and blue light emitting diodes on multiprotein complex proteins and photosynthetic activity under different light intensities in lettuce leaves (Lactuca sativa L.). Internation Journal of Molecular Science. 2014. Vol. 15 (3). P. 4657–4670. doi: 10.3390/ijms15034657
Yablonskaya M.I., Gins M.S., Molchanova M.A. In vitro biotization. Vestnyk RUDN. Seryya «Ahronomyya y zhyvotnovodstvo». 2016. No. 1. P. 15–20 [in Russian]
Tkachenko O. V., Evseeva N. V., Boikova N. V. et al. Improved potato microclonal reproduction with the plant growth-promoting rhizobacteria Azospirillum. Agronomy for Sustainable Development. 2015. Vol. 35. P. 1167–1174. doi: 10.1007/s13593-015-0304-3f
Tseplyaev A.N., Treshchevskaya E.I., Turtanova E.N. Experience of growth in containers of the planting material received by the method of clonal propagation in vitro. Lesotekhnycheskyy zhurnal. 2018. Vol. 8 (3). P. 124–130. [in Russian]