Generation and initial characterization of a collection of spontaneous Streptomyces albus J1074 mutants resistant to rifampicin
Abstract
Aim. Streptomyces albus J1074 is one of the most popular streptomycete chassis for heterologous expression of natural product (NP) biosynthetic gene clusters (BGCs). There is keen interest in further improvement of the strain to provide increased yields of corresponding NPs. Introduction of certain types of antibiotic resistance mutations is a proven way to improve Streptomyces strains. For example, selection for increased resistance to rifampicin is known to lead to increased antibiotic activity. Here we used available lineages of antibiotic-resistant mutants of S. albus to raise rifampicin-resistant variants (Rifr) and to study their properties. Methods. Microbiological and molecular genetic approaches were combined to generate Rifr mutants and to study their properties. Results. By plating S. albus onto GYM agar supplemented with 10 mcg/mL of rifampicin, we isolated 85 stable Rifr colonies, whose resistance level was within 10-200 mcg/mL range. Sequencing revealed wide spectrum of missense mutations within rpoB gene. Bioassays demonstrated dramatically increased endogenous antibiotic activity of certain Rifr mutants. Conclusions. Selection for rifampicin resistance is a viable way to increase the yields of NPs in S. albus.
Keywords: Streptomyces albus J1074, antibiotic resistance, rifampicin.
References
Myronovskyi M., Luzhetskyy A. Heterologous production of small molecules in the optimized Streptomyces hosts. Nat. Prod. Rep. 2019. Vol. 36. P. 1281–1294. doi: 10.1039/c9np00023b.
Ochi K. Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects. J. Antibiot. 2017. Vol. 70. P. 25–40. doi: 10.1038/ja.2016.82.
Lopatniuk M., Myronovskyi M., Nottebrock A., Busche T., Kalinowski J., Ostash B., Fedorenko V., Luzhetskyy A. Effect of "ribosome engineering" on the transcription level and production of S. albus indigenous secondary metabolites. Appl. Microbiol. Biotechnol. 2019. Vol. 103. P. 7097–7110. doi: 10.1007/s00253-019-10005-y.
Siegl T., Luzhetskyy A. Actinomycetes genome engineering approaches. Antonie Van Leeuwenhoek. 2012. Vol. 102. P. 503–516.
Bilyk B., Luzhetskyy A. Unusual site-specific DNA integration into the highly active pseudo-attB of the Streptomyces albus J1074 genome. Appl. Microbiol. Biotechnol. 2014. Vol. 98. P. 5095–5104. doi: 10.1007/s00253-014-5605-y.
Koshla O., Lopatniuk M., Rokytskyy I., Yushchuk O., Dacyuk Y., Fedorenko V., Luzhetskyy A., Ostash B. Properties of Streptomyces albus J1074 mutant deficient in tRNALeuUAA gene bldA. Arch. Microbiol. 2017. Vol. 199. P. 1175–1183. doi: 10.1007/s00203-017-1389-7.
Tanaka Y., Kasahara K., Hirose Y., Murakami K., Kugimiya R., Ochi K. Activation and products of the cryptic secondary metabolite biosynthetic gene clusters by rifampin resistance (rpoB) mutations in actinomycetes. J. Bacteriol. 2013. Vol. 195. P. 2959–2970. doi: 10.1128/JB.00147-13.
Yushchuk O., Ostash I., Vlasiuk I., Gren T., Luzhetskyy A., Kalinowski J., Fedorenko V., Ostash B. Heterologous AdpA transcription factors enhance landomycin production in Streptomyces cyanogenus S136 under a broad range of growth conditions. Appl. Microbiol. Biotechnol. 2018. Vol. 102. P. 8419–8428. doi: 10.1007/s00253-018-9249-1.
Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014. Vol. 30. P. 2114–2120. doi: 10.1093/bioinformatics/btu170.
Hilker R., Stadermann K. B., Doppmeier D., Kalinowski J., Stoye, J. Straube, J., et al. ReadXplorer – visualization and analysis of mapped sequences. Bioinformatics. 2014. Vol. 30. P. 2247–2254. doi: 10.1093/bioinformatics/btu205.
Olano C., Garcнa I., Gonzбlez A., et al. Activation and identification of five clusters for secondary metabolites in Streptomyces albus J1074. Microb Biotechnol. 2014. Vol. 7. P. 242–256. doi:10.1111/1751-7915.12116.