Alanine scanning of dinitroaniline/phosphorothioamidate site of α-tubulin in plasmodium species distributed in India
Abstract
Aim. Identification of amino acid residues participating in specific binding of dinitroaniline and phosphorothioamidate compounds with α-tubulin in Plasmodium falciparum. Methods. Protein structure modelling, protein structure optimization using molecular dynamics method, ligand-protein docking, alanine scanning mutagenesis. Results. Molecular docking of canonical compounds and alanine scanning mutagenesis, indicate two key (Arg2, Val250) and one minor (Glu3) residues involved in binding of both - dinitroaniline and phosphorothioamidate compounds. At the same time, it was revealed two minor residues (Asp251, Glu254) interacting only with some members of dinitroaniline grope. Conclusions. It was identified amino acid residues predetermining existence of joint site and similar interaction of α-tubulin with dinitroani-
line and phosphorothioamidate compounds in P. falciparum.
Keywords: malaria, Plasmodium, α-tubulin, molecular interaction, dinitroanilines compounds, phosphorothioamidate compounds, alanine scanning mutagenesis.
References
World Malaria Report. Geneva: World Health Organization; 2017. Accessed from: https://www.who.int/malaria/publications/world-malaria-report-2017/en/.
Das A., Anvikar A.R., Cator L.J., Dhiman R.C., Eapen A., Mishra N., Nagpal B.N., Nanda N., Raghavendra K., Read A.F., Sharma S.K., Singh O.P., Singh V., Sinnis P., Srivastava H.C., Sullivan S.A., Sutton P.L., Thomas M.B., Carlton J.M., Valecha N. Malaria in India: The Center for the Study of Complex Malaria in India. Acta Trop. 2012. Vol. 121 (3). P. 267–273. doi: 10.1016/j.actatropica.2011.11.008.
Molina-Cruz A., DeJong R.J., Ortega C., Haile A., Abban E., Rodrigues J., Jaramillo-Gutierrez G., Barillas-Mury C. Some strains of Plasmodium falciparum, a human malaria parasite, evade the complement-like system of Anopheles gambiae mosquitoes. Proc. Natl. Acad. Sci. USA. 2012. Vol. 109 (28). P. E1957–1962. doi: 10.1073/pnas.1121183109.
Sharma S.K., Tyagi P.K., Padhan K., Upadhyay A.K., Haque M.A., Nanda N., Joshi H., Biswas S., Adak T., Das B.S., Chauhan V.S., Chitnis C.E., Subbarao S.K. Epidemiology of malaria transmission in forest and plain ecotype villages in Sundargarh District, Orissa, India. Trans. R. Soc. Trop. Med. Hyg. 2006. Vol. 100 (10). P. 917–925. doi: 10.1016/j.trstmh.2006.01.007
Karpov P.A., Demchuk O.M., Ozheredov S.P., Spivak S.I., Yemets A.I., Blume Ya.B. Conservation of dinitroaniline/phosphorothioamidate site of α-tubulin in Plasmodium species distributed in India. Factors of the Experimental Evolution of Organisms. 2019. Vol. 24. P. 327–332. doi: 10.7124/FEEO.v24.1124.
Usanga E.A., O’Brien E., Luzzato L. Mitotic inhibitors arrest the growth of Plasmodium falciaprum. FEBS Lett. 1986. Vol. 209. P. 23–27. doi: 10.1016/0014-5793(86)81077-8
Bell A., Wernli B., Franklin R.M. Effects of microtubule inhibitors on protein synthesis in Plasmodium falciparum. Parasitol. Res. 1993. Vol. 79. P. 146–152. doi: 10.1007/BF00932261
Dieckmann-Schuppert A., Franklin R.M. Compounds binding to cytoskeletal proteins are active against Plasmodium falciparum in vitro. Cell Biol. Int. 1989. Vol. 13. P. 411–418. doi: 10.1016/0309-1651(89)90135-5
Nath J., Schneider I. Anti-malarial effects of the anti-tubulin herbicide trifluralin: studies in Plasmodium falciparum. Clin. Res.1992. Vol. 40. P. 331A.
Fennell B.J., Carolan S., Pettit G.R., Bell A. Effects of the antimitotic natural product dolastatin 10, and related peptides, on the human malarial parasite Plasmodium falciparum. J. Antimicrob. Chemother. 2003. Vol. 51. P. 833–841. doi: 10.1093/jac/dkg151
Schrevel J., Sinou V., Grellier P., Frappier F., Gunnard D., Potier P. Interactions between docetaxel (Taxotere) and Plasmodium falciparum – infected erythrocytes. Proc. Natl. Acad. Sci. USA. 1994. Vol. 91. P. 8472–8476. doi: 10.1093/jac/dkg151
Pouvelle B., Farley P.J., Long C.A., Taraschi T.F. Taxol arrests the development of blood-stage Plasmodium falciparum in vitro and Plasmodium chabaudi adami in malaria-infected mice. J. Clin. Invest. 1994. Vol. 94. P. 413-417. doi: 10.1172/JCI117338
Bell A. Microtubule inhibitors as potential antimalarial agents. Parasitol. Today. 1998. Vol. 14. P. 234–240. doi: 10.1016/S0169-4758(98)01246-0
Fennell B.J., Naughton J.A., Dempsey E., Bell A. Cellular and molecular actions of dinitroaniline and phosphorothioamidate herbicides on Plasmodium falciparum: tubulin as a specific antimalarial target. Mol. Biochem. Parasitol. 2006. Vol. 145 (2). P. 226–238. doi: 10.1016/j.molbiopara.2005.08.020
Corral M.G., Leroux J., Stubbs K.A., Mylne J.S. Herbicidal properties of antimalarial drugs. Sci. Repts. 2017. Vol. 7. P. 45871. doi: 10.1038/srep45871.
Robinson D.R., Sherwin T., Ploubidou A., Byard E.H., Gull K. Microtubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle. J. Cell Biol. 1995. Vol. 128. P. 1163-1172. doi: 10.1083/jcb.128.6.1163
Werbovetz K.A. Tubulin as an antiprotozoal drug target. Mini Rev. Med. Chem. 2002. Vol. 2. P. 519–529. doi: 10.2174/1389557023405648
Dhooghe E., Van L.K., Eeckhaut T., Leus L., Van H.J. Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tiss. Org. Cult. 2011. Vol. 104. P. 359–373. doi: 10.1007/s11240-010-9786-5
Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., Lepore R., Schwede T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucl. Acids Res. 2018. Vol. 46 (W1). P. W296–W303. doi: 10.1093/nar/gky427
Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N., Bourne P.E. The Protein Data Bank. Nucl. Acids Res. 2000. Vol. 28 (1). P. 235–242.
Ichikawa M., Liu D., Kastritis P.L., Basu K., Hsu T.C., Yang S., Bui K.H. Subnanometre-resolution structure of the doublet microtubule reveals new classes of microtubule-associated proteins. Nat. Commun. 2017. Vol. 8. P. 15035. doi: 10.1038/ncomms15035.
Roy A., Kucukural A., Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nature Protocols. 2010. Vol. 5. P. 725–738. doi: 10.1038/nprot.2010.5
Liu P., Dehez F., Cai W., Chipot C. A toolkit for the analysis of free-energy perturbation calculations. J. Chem. Theor. Comput. 2012. Vol. 8. P. 2606–2616. doi: 10.1021/ct300242f
Simonsen S.M., Sando L., Rosengren K.J., Wang C.K., Colgrave M.L., Daly N.L., Craik D.J. Alanine scanning mutagenesis of the prototypic cyclotide reveals a cluster of residues essential for bioactivity. J. Biol. Chem. 2008. Vol. 283 (15). P. 9805–9813. doi: 10.1074/jbc.M709303200.
Howlader M.T., Kagawa Y., Miyakawa A., Yamamoto A., Taniguchi T., Hayakawa T., Sakai H. Alanine scanning analyses of the three major loops in domain II of Bacillus thuringiensis mosquitocidal toxin Cry4Aa. Appl. Environ. Microbiol. 2010. Vol. 76 (3). P. 860–865. doi: 10.1128/AEM.02175-09.
Gauguin L., Delaine C., Alvino C.L., McNeil K.A., Wallace J.C., Forbes B.E., De Meyts P. Alanine scanning of a putative receptor binding surface of insulin-like growth factor-I. J. Biol. Chem. 2008. Vol. 283 (30). P. 20821–20829. doi: 10.1074/jbc.M802620200.