Creation of a genetic vector carrying a synthesis bacterial protein gene CAS9 for plant genome editing
Abstract
Aim. To create a genetic construct carrying the bacterial protein Cas9 gene, the reporter β-glucuronidase gus gene, as well as the marker phosphinotricin-N-acetyltransferase bar gene for plant genome editing. Methods. Molecular-biological, biotechnological, microbiological and bioinformatic methods were used in the study; Golden Gate molecular cloning method was used to create genetic constructs. Results. The genetic construct pSPE2053 which carries the Cas9 endonuclease gene, the gus and bar genes was created; the assembly correctness of all vector elements was confirmed by polymerase chain reaction; the construct was transferred to Escherichia coli and Agrobacterium tumefaciens cells; β-glucuronidase gene expression was verified by histochemical analysis after Nicotiana rustica L transient genetic transformation. Conclusions. The created genetic construct can be used to edit the plant genome for both stable and transient genetic transformation to accumulate recombinant Cas9 protein. The guide RNA sequences may be subsequently transferred into such plants using either stable or transient genetic transformation or traditional crossing methods.
Keywords: cloning, genetic construction, gus and bar genes, Cas9 endonuclease protein, transient expression.
References
Yue J.-J., Hong C.-Y., Wei P., Tsai Y.-C., Lin C.-S. How to start your monocot CRISPR/Cas project: plasmid design, efficiency detection, and offspring analysis. Rice. 2020. Vol. 13. doi: 10.1186/s12284-019-0354-2.
Doudna J.A., Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014. Vol. 346. doi: 10.1126/science.1258096.
Nemudryy A.A., Valetdinova K.R., Medvedev S.P., Zakíyan S.M. Sistemy Redaktirovaniya Genomov TALEN I CRISPR/Cas – Instrumenty Otkrytiy. Acta Naturae. 2014. Vol. 6. P. 20–42. [in Russian]
Engler C., Kandzia R., Marillonnet S. A One Pot, One Step, Precision Cloning Method with High Throughput Capability. PLoS One. 2008. Vol. 3. e3647. doi: 10.1371/journal.pone.0003647.
Weber E., Engler C., Gruetzner R., Werner S., Marillonnet S. A modular cloning system for standardized assembly of multigene constructs. PLoS One. 2011. Vol. 6 (2). e16765. doi: 10.1371/journal.pone.0016765.
Engler C., Youles M., Gruetzner R., Ehnert T.-M., Werner S., Jones J.D., Patron N.J., Marillonnet S. A golden gate modular cloning toolbox for plants. ACS Synthetic Biology. 2014. Vol. 3 (11). P. 839–843. doi: 10.1021/sb4001504.
Werner S, Engler C, Weber E, Gruetzner R, Marillonnet S. Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system. Bioeng Bugs. 2012. Vol. 3 (1). P. 38–43. doi: 10.1371/journal.pone.0016765.
Van Die I., Bergmans H., Hoekstra W. Transformation in Escherichia coli: Studies on the Role of the Heat Shock in Induction of Competence. Microbiology. 1983. Vol. 129. P. 663–670. doi: 10.1099/00221287-129-3-663.
Froger A., Hall J. Transformation of Plasmid DNA into E. coli Using the Heat Shock Method. Journal of Visualized Experiments. 2007. Vol. 6. e253. doi: 10.3791/253.
Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1989. 545 p.
Bertani G. Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. Journal of Bacteriology, 1951. Vol. 62 (3). P. 293–300.
Leuzinger K., Dent M., Hurtado J., Stahnke J., Lai H., Zhou X., Chen Q. Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins, JoVE (Journal of Visualized Experiments). 2013. Vol. 77. e50521. P. 1–9. doi: 10.3791/50521.
Jefferson R. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Molecular Biology Reporter. 1987. Vol. 5. P. 387–405.
Quimisse M.G., Kabardaeva K.V., Gra O.A., Tyurin А.А. Contribution of Consensus 5'-Untranslated Region to the Translational Efficiency of Heterologous Genes in Plant Cells. Bulletin of Peoples’ Friendship University of Russia: Series Agronomy and Animal Industries. 2015. Vol. 3. P. 56–68. [in Russian]
Sugio T., Satoh J., Matsuura H., Shinmyo A., Kato K. The 5′-Untranslated Region of the Oryza sativa Alcohol Dehydrogenase Gene Functions as a Translational Enhancer in Monocotyledonous Plant Cells. Journal of Bioscience and Bioengineering. 2008. Vol. 105. P. 300–302. doi: 10.1263/jbb.105.300.
Liu X., Wu S., Xu J., Sui C., Wei J. Application of CRISPR/Cas9 in plant biology. Acta Pharmaceutica Sinica B. 2017. Vol. 7. P. 292–302. doi: 10.1016/j.apsb.2017.01.002.
Wei H., Meilan R., Brunner A.M., Skinner J.S., Ma C., Strauss S.H. Transgenic sterility in Populus: expression properties of the poplar PTLF, Agrobacterium NOS and two minimal 35S promoters in vegetative tissues. Tree Physiology. 2006. Vol. 26. P. 401–410. doi: 10.1093/treephys/26.4.401.
Nekrasov V., Staskawicz B., Weigel D., Jones J., Kamoun S. Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology. 2013. Vol. 31. P. 691–693. doi: 10.1038/nbt.2655.
Baltes N., Hummel A., Konecna E., Cegan R., Bruns A., Bisaro D., Voytas D. Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Nature Plants. 2015. Vol. 1. 15145. doi: 10.1038/nplants.2015.145.