The influence of posttranscription silensing protein-suppressor P19 on the transient gfp gene expression level in aztec tobacco plants (Nicotiana rustica L.)

  • O. I. Varchenko
  • M. S. Dzuh
  • M. F. Parii
  • Yu. V. Symonenko


Aim. Genetic constructs creation for studying the influence effect of the viral posttranscriptional silencing protein suppressor p19 on transient reporter green fluorescent protein (GFP) expression and accumulation. Methods. The Golden Gate molecular cloning method was used to create the genetic constructs; the leafy tissues of the Aztec tobacco plants (Nicotiana rustica L.) were infiltrated with a suspension of Agrobacterium tumefaciens L.; the gfp gene expression level was determined by spectrofluorometric and quantitative protein (Bradford method) assays. Results. As a result of the work, the pSPV2324 genetic construct was created, which contained the reporter gene for the green fluorescent protein gfp and the gene for the synthesis of the viral posttranscriptional silencing protein suppressor p19 and its effect on the accumulation of the recombinant GFP protein was determined. A comparative analysis of the gfp gene expression level without and with the suppressor protein synthesis gene in the genetic vector showed that the fluorescence level of GFP protein in Aztec tobacco tissues was 1.3 times higher during spectrofluorimetric analysis using the p19 suppressor gene construct. Conclusions. The positive effect of the viral suppressor silencing P19 gene on the accumulation of recombinant GFP protein in tissues plants of N. rustica L. was shown for the first time. The increase in GFP protein fluorescence when using the p19 suppressor protein construct in spectrofluorimetric analysis coincides with an increase in the total concentration of total water-soluble proteins and the level fluorescence of GFP protein in their native electrophoretic separation.

Keywords: cloning, genetic constructs, transient expression, silencing protein suppressor p19, green fluorescent protein (GFP).


Kapila J., de Rycke R., van Montagu M., Angenon G. An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci., 1997, Vol. 122 (1). P. 101–108. doi: 10.1016/S0168-9452(96)04541-4.

Fischer R., Vaquero-Martin C., Sack M., Drossard J., Emans N. Commandeur U. Towards molecular farming in the future: transient protein expression in plants. Biotechnol. Appl. Biochem. 1999. Vol. 30 (2). P. 113–116. doi: 10.1111/j.1470-8744.1999.tb00900.x.

Marillonnet S., Thoeringer C., Kandzia R., Klimyuk V., Gleba Y. Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat. Biotechnol. 2005. Vol. 23 (6). P. 718–723. doi: 10.1038/nbt1094.

Gleba Y., Klimyuk V., Marillonnet S. Magnifection – a new platform for expressing recombinant vaccines in plants. Vaccine. 2005. Vol. 23 (17-18). P. 2042–2048. doi: 10.1016/j.vaccine.2005.01.006.

Giddings G., Allison G., Brooks D., Carter A. Transgenic plants as factories for biopharmaceuticals. Nat. Biotechnol. 2000, Vol. 18. P. 1151–1155. doi: 10.1038/81132.

Johansen L.K., Carrington J.C. Silencing on the spot. Induction and suppression of RNA silencing in the Agrobacterium-mediated transient expression system. Plant Physiol. 2001, Vol. 126 (3). P. 930–938. doi: 10.1104/pp.126.3.930.

Malinovskiy V.I., Borovskiy G.B., Gorbyleva E.L., Fedoseeva I.V., Tauson, E.L., Sokolov V.A., Voynikov V.K. Rol'

korotkikh RNK v ustoychivosti rasteniy k bioticheskim i abioticheskim stressam. Vavilovskiy zhurnal genetiki i selektsii. 2013, Vol. 17 (1). P. 96–103. [in Russian]

Kirgizova I.V., Ergaliev T.M. Kharakteristika belka-supressora R19 virusa Tomato bushy stunt virus. Scientific Cooperation Center “Interactive plus”. 2017. P. 1–6. [in Russian]

Voinnet O., Rivas S., Mestre P., Baulcombe D. An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. The Plant Journal. 2003. Vol. 33 (5). P. 949–956. doi: 10.1046/j.1365-313X.2003.01676.x.

Leuzinger K., Dent M., Hurtado J., Stahnke J., Lai H., Zhou X., Chen Q. Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins. JoVE (Journal of Visualized Experiments). 2013. Vol. 77. P. e50521. doi: 10.3791/50521.

Shamloul M., Trusa J., Mett V., Yusibov, V. Optimization and utilization of Agrobacterium-mediated transient protein production in Nicotiana. JoVE (Journal of Visualized Experiments). 2014. Vol. 86. P. e51204. doi: 10.3791/51204.

Conley A.J., Zhu H., Le L.C., Jevnikar A.M., Lee B.H., Brandle J.E., Menassa R. Recombinant protein production in a variety of Nicotiana hosts: a comparative analysis, Plant biotechnology journal. 2011. Vol. 9 (4). P. 434–444. doi: 10.1111/j.1467-7652.2010.00563.x.

Engler C., Gruetzner R., Kandzia R., Marillonnet S. Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PloS one. 2009. Vol. 4 (5). P. 5553. doi: 10.1371/journal.pone.0005553.

Chalfie M., Tu Y., Euskirchen G., Ward W.W., Prasher, D.C. Green Fluorescent Protein as a Marker for Gene Expression. Science. 1994. Vol. 263. P. 802–805. doi: 10.1126/science.830329.

Weber E., Engler C., Gruetzner R., Werner S., Marillonnet S. A modular cloning system for standardized assembly of multigene constructs. PLoS One. 2011. Vol. 6 (2). P. e16765. doi: 10.1371/journal.pone.0016765.

Engler C., Youles M., Gruetzner R., Ehnert T.-M., Werner S., Jones J.D., Patron N.J., Marillonnet S. A golden gate modular cloning toolbox for plants. ACS Synthetic Biology. 2014. Vol. 3 (11). P. 839–843. doi: 10.1021/sb4001504.

Werner S, Engler C, Weber E, Gruetzner R, Marillonnet S. Fast track assembly of multigene constructs using Golden Gate cloning and the MoClo system. Bioeng Bugs. 2012. Vol. 3 (1). P. 38-43. doi: 10.1371/journal.pone.0016765.

Froger A., Hall J.E. Transformation of plasmid DNA into E. coli using the heat shock method. Journal of visualized experiments: JoVE. 2007. Vol. 6. P. e253. doi: 10.3791/253.

Lerner C.G., Inouye, M. Low copy number plasmids for regulated low-level expression of cloned genes in Escherichia coli with blue/white insert screening capability. Nucleic acids research. 1990. Vol. 18 (15). P. 4631. doi: 10.1093/nar/18.15.4631.

Lezin G., Kosaka Y., Yost H.J., Kuehn, M.R., Brunelli, L. A one-step miniprep for the isolation of plasmid DNA and lambda phage particles. PLoS One. 2011. Vol. 6 (8). P. e23457. doi: 10.1371/journal.pone.0023457.

Sambrook J., Fritsch E.F., Maniatis T. Molecular Cloning: A Laboratory Manual, 2nd ed, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1989. 545 p.

Varchenko O.I., Krasyuk B.M., Fedchunov O.O., Zimina О.V., Parii M.F., Symonenko Yu.V. Genetic constructs creating using Golden Gate method, Factors in experimental evolution of organisms. 2019. Vol. 25. P. 190–196. [in Ukrainian]

Leuzinger K., Dent M., Hurtado J., Stahnke J., Lai H., Zhou X., Chen Q. Efficient agroinfiltration of plants for high-level transient expression of recombinant proteins, JoVE (Journal of Visualized Experiments). 2013. Vol. 77. e50521. P. 1–9. doi: 10.3791/50521.

Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976. Vol. 72. P. 248–254. doi: 10.1006/abio.1976.9999.

Liu L., Zhang Y., Tang S., Zhao Q., Zhang Z., Zhang H., Xie Q.. An efficient system to detect protein ubiquitination by agroinfiltration in Nicotiana benthamiana. The Plant Journal. 2010. Vol. 61 (5). P. 893–903. doi: 10.1111/j.1365-313X.2009.04109.x

Siddiqui S.A., Sarmiento C., Truve E., Lehto H., Lehto K. Phenotypes and functional effects caused by various viral RNA silencing suppressors in transgenic Nicotiana benthamiana and N. tabacum. Molecular plant-microbe interactions. 2008. Vol. 21 (2). P. 178–187. doi: 10.1094/MPMI-21-2-0178.