Genetic analysis of oleic acid сontent in the oil of maize on the basis of mutation Sugary-1

  • D. S. Tymchuk
  • G. S. Potapenko
  • N. F. Tymchuk
  • V. V. Myzhylko


Aim. Genetic analysis of oleate content in the carriers of maize  mutation su1. Methods. Experiments were conducted on a series of inbreds – carriers of mutation su1, as well as hybrids derived from their diallel and top cross crossings. Results. Inbreds – carriers of mutation su1 were notable as having the increased content of oleate, which was inherited by the type of incomplete dominance with the prevailing contribution of additive effects to the variance. Conclusions. Increasing the content of the oleic acid glycerides in the carriers of mutation su1 caused by the spatial coupling of the locus su1 with the oleate – encoding locus, the effect of which can be modified by the polygenic complex.

Keywords: Zea mays L., mutation su1, oleic acid, genetic analysis.


Warner K., Knowlton S. Frying quality and oxidative stability of high – oleic corn oils. J. Amer. Oil. Chem. Soc. 1997. Vol. 74. P. 1317–1322.

Pravst I. Oleic acid and its potential health effects. Oleic acid. Production, uses and potential health effects: monography / L. Whelan Ed. New-York: Nova Sci. Publ. Inc., 2014. Cpt. 3. P. 35–54.

Choe E., Min D.B. Chemistry of deep – frying oils. J. Food Sci. 2007. Vol. 72. P. 77–86.

Moreau R.A. Corn oil. Vegetable oils in food technology: composition, properties and uses: monography. F.D. Gunstone Ed., 2nd ed. Chichester: Wiley & Blackwell, 2011. Сhpt. 10. P. 273–289.

Lee E.A. Maize for oil. Oil crops: monography / J. Vollmann, I. Raican Eds. Dordrecht – Heidelberg – London – New-York: Springer Sci., 2009. Chpt. 17. P. 493–506.

Coughlan S.J., Kinney A. Transgenic plants as a sources of modified oils. Plant biotechnology and transgenic plants: monography/ K.-M. Oksman – Caldentey, W. Barz Eds. New – York – Basel: Marcel Dekker Inc., 2002. Chpt. 13. P. 316–332.

Duvick S.A., Pollak L.M., Edwards J.W., White P.J. Altering the fatty acid composition of corn belt corn through tripsacum introgression. Maydica. 2006. Vol. 51. P. 409–416.

White P.J., Pollak L.M., Duvick S. Improving the fatty acid composition of corn oil by using germplasm introgression. Lipid Technol. 2007. Vol.19. P. 35 - 38.

Whight A. A gene conditioning high oleic maize oil,OCL1. Maydica.1995. Vol. 40. P. 85- 88.

Alrefai R., Berke T.G., Rocheford T.R. Quantitative trait locus analysis of fatty acid concentrations in maize. Genome. 1995. Vol. 38. P. 894–901.

Motto M., Balconi C., Hartings H., Rossi V. Gene discovery for improvement of kernel quality-related traits in maize. Genetika. 2010. Vol. 42. P. 23–56.

Tymchuk D.S., Muzhylko V.V., Tymchuk S.M. Effects of interactions of non – allelic genes of maize endosperm structure on the oil fatty acid composition. Faktory eksperymental′noі evoliutsii orhanizmiv: zbirnyk naukovykh prats’. Kyiv: Ukrains′ke tovarystvo henetykiv i selektsioneriv im. M.I. Vavilova, 2017. Vol. 21. P. 205–209.

Neuffer M.G., Coe E.H., Wessler S.R. Mutants of maize: monography. Cold Spring Harbor: Cold Spring Harbor Lab.Press, 1997. 468 p.

Dospekhov B.A. Technique of field experiment. Moskva: Ahropromyzdat, 1985. 351 p.

Prokhorova M.Y. Methods of biochemical research. Leningrad: Khymyia, 1982. 272 p.

Lakyn H. F. Byometryia. Moskva: Vysshaia shkola, 1973. 343 p.

Lytun P.P., Proskurnyn N.V. Genetics of quantitative traits: genetic crossing and genetic analysis: uchebnoe posobye. Kyev: UMVO, 1992. 96 p.

Tetlow I.J., Morell M.K., Emes M.J. Recent developments in understading the regulation of starch metabolism in higher plants. J. Exp. Bot. 2004. Vol. 55. P. 2131–2145.

Shanklin J., Cahoon E.B. Desaturation and related modifications of fatty acids. Annu Rev Plant Physiol Plant Mol Biol. 1998. Vol. 49. P. 611–641.

Belo A., Zheng P., Luck S., Shen B., Meyer D.J., Li B., Tingey S., Rafalski A. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol. Gen. Genomics. 2008. Vol. 279. P. 1–10.