Evaluation of toxicity and genotoxicity of nano nanoparticles Ag2S, synthesised by biological matrix, on Drosophila melanogaster Mg. (Diptera: Drosophilidae)

  • O. V. Protsenko
  • Ya. Yasinskiy
  • I. I. Horiunova
  • S. H. Plohovska
  • M. N. Borovaya
  • A. S. Postovoitova
  • N. M. Pirko
  • Ya. B. Pirko
  • A. I. Yemets
  • S. V. Demydov
  • I. A. Kozeretska


Aim. To evaluate the toxicity and genotoxicity of Ag2S quantum dots that had been synthesized by the mycelium of the fungus Pleurotus ostreatus on Drosophila melanogaster. Methods. The toxicity of nanoparticles was determined by assessing the survival rate of imagos and larvae. Genotoxicity was studied in the reparation test. The influence of nanoparticles on the development of the D. melanogaster reproductive system was determined by evaluating the number of ovariols. Results. The toxic effects of ionic silver and the absence of such effects in biosynthetic Ag2S nanoparticles had been shown. The negative influence of biosynthesized Ag2S nanoparticles and biomaterials and ionic silver on the development of D. melanogaster reproductive system had been revealed. There was no genotoxic effect for all investigated specimens. Conclusions. Ag2S biosynthesized quantum dots do not have a toxic and genotoxic effects on D. melanogaster at the concentration of 1.5 mg/ml. However, the action of Ag2S (salt), the biological matrix Pleurotus and biosynthetic Ag2S nanoparticles leads to a decrease in the number of ovariols.

Keywords: Ag2S nanoparticles, D. melanogaster, toxicity, genotoxicity.


Abaeva L.F., Shumskyi V.Y., Petrytskaia E.N., Rohatkyn D.A., Liubchenko P.N. Nanochastytsy y nanotekhnolohyy v medytsyne sehodnia y zavtra Almanakh klynycheskoi medytsyny. 2010. No. 22. P. 10–16.

Lem K.W., Choudhury A., Lakhani A.A., Kuyate P., Haw J.R., Lee D.S., Iqbal Z., Brumlik C.J. Use of nanosilver in consumer products. Rec Pat Nanotec. 2012. Vol. 6. P. 60–72. doi: 10.2174/187221012798109318

Faria A.F., Martinez D.S.T., Meira S.M.M., Moraes A.C.M., Brandelli A., Souza Filho A.G., Alves O.L. Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. Colloid Surf B. 2014. Vol. 113. P. 115–124. doi: 10.1016/j.colsurfb.2013.08.006.

Duran N., Silveira C.P., Duran M., Martinez D.S.T. Silver nanoparticle protein corona and toxicity: a mini-review. J Nanobiotechnol. 2015. Vol. 13. P. 55. doi: 10.1186/s12951-015-0114-4.

Wilkinson C.F., Brattsten L.B. Microsomal drug metabolizing enzymes in Insects. Drug Metab. Rev. 1972. Vol. 1. P. 153.

Zijlstra J.A., Vogel E.W., Breimer D.D. Pharmacological and toxicological aspects of mutagenicity research in Drosophila melanogaster. Reviews in Biochemical Toxicology. Vol. 8. Eds E. Hodgston J.R. Bend R.M. Philpot. Amsterdam: Elsevier, 1987.

Zakharenko L.P., Zakharov I.K. Determination of mutagenicity of chemical compounds, physical factors and environmental pollutants by the Drosophila melanogaster wing somatic mutation and recombination test. Vavilovskii Zhurnal Genetiki i Selektsii =Vavilov Journal of Genetics and Breeding. 2016. Vol. 20, No. 1. P. 72–77. doi: 10.18699/VJ16.113.

Ashburner M., Golic K., Hawley R. Drosophila: A Laboratory Handbook. 2nd ed. York: Cold Spring Harbor Laboratory Press, 2005. 1370 p.

Fujikawa K. Genotoxic potency in Drosophila melanogaster of selected aromatic amines and polycyclic aromatic hydrocarbons as assayed in the DNA repair test. Mutation Research. 1993. No. 290. P. 175–182. doi: 10.1016/0027-5107(93)90157-b

Wen H., Dan M., Yang Y., Lyu J., Shao A., Cheng X, et al. Acute toxicity and genotoxicity of silver nanoparticle in rats PLoS ONE. 2017. Vol. 12, No. 9. P. 1–16. doi: 10.1371/journal.pone.0185554.

Raj A., Shah P., Agrawal N. Dose dependent effect of silver nanoparticles (AgNPs) on fertility and survival of Drosophila: An in-vivo study PLoS ONE. 2017. Vol. 12, No. 5. P. 1–14. doi: 10.1371/journal.pone.0178051.

Micla˘us T., Beer C., Chevallier J., Scavenius C., Bochenkov V.E., Enghild J.J., Sutherland D.S. Dynamic protein coronas revealed as a modulator of silver nanoparticle sulphidation in vitro. Nat. Commun. 2016. Vol. 7, No. 11770. P. 1–10. doi: 10.1038/ncomms11770.

Ong C., Lee Q.Y., Cai Y., Liu X., Ding J., Yung L.L., Bay B., Baega G. Silver nanoparticles disrupt germline stem cell maintenance in the Drosophila testis. Sci. Rep. 2016. 6, P. 1–10. doi: 10.1038/srep20632.

Zhang Y., Hong G., Zhang Y., Chen G., Li F., Dai H., Wang Q. Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano. 2012. Vol. 6, No. 5. P. 3695–3702. doi: 10.1021/nn301218z.

Haza A.I.B., Drosopoulou E., Mavragani-Tsipidou P., Morales P. In vivo genotoxicity assesment of silver nanoparticles of different sizes by the somatic mutation and recombination test (SMART) on Drosophila. Food Chem Toxicol. 2015 Vol. 85. P. 114–119. doi: 10.1016/j.fct.2015.06.024.