Reactions of corn cell cultures during hard osmotic stresses action
Abstract
Aim. There are corn cell cultures, obtained from plants of maize inbred line L-390 (control) and from T2 progeny (L-390-T) of plants transformed via in planta Agrobacterium-mediated transformation with LBA4404 strain harboring pBi2E with double-stranded RNA-suppressor of the proline dehydrogenase gene. The reactions of cell variants, cultivated under hard osmotic stress pressure were investigated. Methods. 25.0 g/l of sea water salts or 0.8 M of mannitol were added to F1 cultural medium. Corn cell variants were tested under osmotic stress pressure. The free proline and protein levels were estimated on 14-th and 34-th days of the experiment. Results. L-390-T cell cultures maintained viability and wild type cultures died at the end of experiment. The levels of free proline rose in calli tissues, cultivated on nutrition medium with the addition of mannitol or salinity. At the same time the proline levels of L-390-T cells were products of biosynthesis. While the proline content in control cultures elevated after the degradation of proline rich proteins (PRPs). Conclusions. The L-390-T high level of osmotic stress tolerance is a possible result of transgene activity.
Keywords: Zea mays, cell cultures, Agrobacterium-mediated transformation salinity, water stress, proline.
References
Lobov V.P., Tomilin M.V., Veselov A.I. Geneticheski modifitsirovannye rasteniia: dostizheniia, perspektivy i ogranicheniia. Vestn. Nizhegorodskogo un-ta, ser. Obshchaia biologiia. 2010. No 2 (2). P. 423–429. [in Russian]
Kolodiazhnaia Ia.S. Issledovanie stressoustoychivosti geneticheski modifitsirovannykh rasteniy tabaka (Nicotiana tabacum L.), ekspressiruiushchikh antismyslovoy supressor gena prolindegidrogenazy: avtoref. diss. … kand. biol. nauk. Novosibirsk, 2007. 16 p. [in Russian]
Green C.E., Phillips R.L. Plant regeneration from tissue cultures of maize. Crop Sci. 1975. 15. P. 417–421. doi: 10.2135/cropsci1975.0011183X001500030040x
Andriushchenko V.K., Saianova V.V., Zhuchenko A.A., D'iachenko N.I., Chilikina L.A., Drozdov V.V., Korochkina S.K., Cherep G.I., Medvedev V.V., Niutin Iu.I. Modifikatsiia metoda opredeleniia prolina dlia vyiavleniia zasukhoustoychivykh form roda Lycopersicon Tourn. Izvestiia Akademii Nauk Moldavskoy SSR. 1981. No 4. P. 55–60. [in Russian]
Poperelia F.A., Asyka Iu.A. Metodicheskie ukazaniia po elektroforezam geliantina zerna kukuruzy dlia opredeleniia protsenta gibridnosti. Moskva, 1988. P. 4–6. [in Russian]
Lapshin P.V., Butenko R.G., Shevelukha V.S. Kletochnaia selektsiia iarovoy miagkoy pshenitsy na ustoychivost' k deystviiu UF-B-radiatsii. Izv. TSKhA. 2000. No 2. P. 136–144. [in Russian]
Szabados L., Savoure A. Proline: a multifunctional amino acid. Trends Plant Sci. 2010. 15. P. 89–97. doi: 10.1016/j.tplants.2009.11.009
Hasegawa P.M., Bressan R.A., Zhu J.-K., Bohnert H.J. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000. 51. P. 463–499. doi: 10.1146/annurev.arplant.51.1.463
Hassan N.S., Shaaban L.D., Hashem E.-S.A., Seleem E.E. In vitro selection for water stress tolerant callus line of Helianthus annus L. cv. Myak. Int. J. Agr. Biol. 2004. 1. P. 13–18.
Stein H., Honig A., Miller G., Erster O., Eilenberg H., Csonka L.N. Elevation of free proline and proline-rich protein levels by simultaneous manipulations of proline biosynthesis and degradation in plants. Plant Sci. 2011. 181. P. 140–150. doi: 10.1016/j.plantsci.2011.04.013
Battaglia M., Solorzano R.M., Hernandez M., Cuellar-Ortiz S., Garcia-Gomez B., Marquez J., Covarrubias A.A. Proline-rich cell wall proteins accumulate in growing regions and phloem tissue in response to water deficit in common bean seedlings. Planta. 2007. 225. P. 1121–1133. doi: 10.1007/s00425-006-0423-9
Jose-Estaniol M., Gomis-Ruth F.X., Puigdomenech P. The eight-cysteine motif a versatile structure in plant proteins. Plant Physiol. Biochem. 2004. 42. P. 355–365. doi: 10.1016/j.plaphy.2004.03.009