Cross-pollination in wheat Triticum aestivum L. and its wild relative Aegilops biuncialis Vis.
Abstract
Aim. The aim of the study was analysis of outcrossing indices in Triticum aestivum L. plants depending on growth conditions and in natural populations of its wild relative Aegilops biuncialis Vis. using storage proteins as genetic markers. Methods. SDS and APAG electrophoresis was used to identify genotypes at the Glu-1 and Gli-1 loci for single seeds from F2 plants of T. aestivum and in samples from natural populations of Ae. biuncialis. Results. In T. aestivum, significant differences in the frequency of cross-pollination were revealed, from 0.3 to 11 % depending on year’s conditions and the dose of the 1BL/1RS translocation. The high outcrossing rate was observed under low humidity and the absence of precipitations. The frequency of cross-pollination is, on average, 2.3 % in T. aestivum and 4.38 % in Ae. biuncialis. Conclusions. Differences in outcrossing indices between genotypes with different doses of 1BL/1RS are realized only in certain conditions: drought at moderate temperatures favors cross-pollination. The rate of outcrossing is similar in T. aestivum and Ae. biuncialis.
Keywords: cross-pollination, Triticum aestivum L., Aegilops biuncialis Vis, storage proteins.
References
Campbell C.S. Cleistogamy in grasses. Ann. Rev. Ecol. Syst. 1983. V. 14. P. 411-441. doi: 10.1146/annurev.es.14.110183.002211
Boguslavskiy R.L., Golik O.V. Rod Aegilops L. kak geneticheskiy resurs selektsii. Khar'kov, 2004. 236 p. [in Russian]
Waines J.G., Hegde S.G. Intraspecific gene flow in bread wheat as affected by reproductive biology and pollination ecology of wheat flowers. Crop Sci. 2003. V. 43. P. 451-463. doi: 10.2135/cropsci2003.0451
Koliuchiy V.T., Zhivotkov L.A., Sozinov A.A. Polimorfizm gliadina i razlichnaia sposobnost' k spontannomu pereopyleniiu u sortov pshenitsy mironovskoy selektsii. Dokl. VASKhNIL. 1987. No. 4. P. 5-7. [in Russian]
Martin T.J. Outcrossing in twelve hard red winter wheat cultivars. Crop Sci. 1990. V. 30. P. 59-62. doi: 10.2135/cropsci1990.0011183X003000010013x
Hucl P. Out-crossing rates for 10 Canadian spring wheat cultivars// Can. J. Plant Sci. 1996. V. 76. P. 423-427. doi: 10.4141/cjps96-075
Hucl P., Matus-Cadriz M. Isolation distances for minimizing out-crossing in spring wheat. Crop Sci. 2001. V. 41. P. 1348-1351. doi: 10.2135/cropsci2001.4141348x
Matus-Cadriz M.A., Hucl P., Horak M.J., Blomquist L.K. Gene flow in wheat at the field scale. Crop Sci. 2004. V. 44. P. 718-727. doi: 10.2135/cropsci2004.7180
Hanson B.D., Mallory-Smith C.A., Shafii B., Thill D.C., Zemetra R.S. Pollen-mediated gene flow from blue aleurone wheat to other wheat cultivars. Crop. Sci. 2005. V. 45. P. 1610-1617. doi: 10.2135/cropsci2004.0443
Lawrie R.G., Matus-Cadriz M.A., Hucl P. Estimating out-crossing rates in spring wheat cultivars using the contact method. Crop Sci. 2006. V. 46. P. 247-249. doi: 10.2135/cropsci2005.04-0021
Miroshnichenko D., Pushin A., Dolgov S. Assessment of the pollen-mediated transgene flow from the plants of herbicide resistant wheat to conventional wheat (Triticum aestivum L.). Euphytica. 2016. V. 209(1). P. 71-84. doi: 10.1007/s10681-016-1637-y
De Vries A.Ph. Flowering biology of wheat, particularly in view of hybrid seed production - A review. Euphytica. 1971. V. 20. P. 152-170. doi: 10.1007/BF00056076
Lukac M., Gooding M.J., Griffiths S., Jones H.E. Asynchronous flowering and within-plant flowering diversity in wheat and the implications for crop resilience to heat. Ann. Bot. 2012. V. 109(4). P. 843-850. doi: 10.1093/aob/mcr308
Rieben S., Kalinina O., Schmid B., Zeller S.L. Gene flow in genetically modified wheat. PLoS ONE. 2011. V. 6(12). e29730. doi: 10.1371/journal.pone.0029730.
Kozub N.A., Sozinov I.A., Sozinov A.A. Zavisimost' pokazateley perekrestnogo opyleniia ot genotipicheskikh osobennostey u miagkoy pshenitsy. Tsitologiia i genetika. 2008. V. 42(3). P. 87-93. [in Russian] doi: 10.3103/S0095452708030080
Beckie H.J., Warwick S.I., Hall L.M., Harker K.N. Pollen-mediated gene flow in wheat fields in Western Canada. AgBioForum. 2012. V. 15(1). P. 36-43.
Gustafson D.I., Horak M.J., Rempel C.B., Metz S.G., Gigax D.R., Hucl P. An empirical model for pollen-mediated gene flow in wheat. Crop. Sci. 2005. V. 45. P. 1286-1294. doi: 10.2135/cropsci2004.0137
Kozub N.A., Sozinov I.A., Sobko T.A., Kolyuchii V.T., Kuptsov S.V., Sozinov A.A. Variation at storage protein loci in winter common wheat cultivars of the Central Forest-Steppe of Ukraine. Tsitologiia i genetika. 2009. V. 43(1). P. 69-77. doi: 10.3103/S0095452709010101
Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970. V. 227(5259). P. 680-685. doi: 10.1038/227680a0
Metakovsky E.V. Gliadin allele identification in common wheat. II Catalogue of gliadin alleles in common wheat. J. Genet. Breed. 1991. V. 45. P. 325-344.