Expression pattern of SLWRKY33 and SLERF5 in tomato plants under elevated salt concentration and water deficit

  • H. R. Jafarov Khazar University, Azerbaijan, AZ-1009, Baku, Mahsati str., 11
  • K. G. Gasimov Institute of Biophysics, Azerbaijan National Academy of Sciences, Azerbaijan, AZ-1141, Baku, Z. Khalilov str., 117


Aim. High salinity, drought, and low temperature are the major abiotic stresses affecting plant growth and development and can lead to serious yield losses of agricultural crops. In plants, the majority of responses to abiotic stresses are con-trolled at the transcriptional level that is regulated by transcription factors (TFs). The family of WRKY and AP2/ERF are important superfamilies involved in response of plants to abiotic stress. Methods. The tissue-specific expression pattern of two superfamily members – SlWRKY33 from WRKY and SlERF5 from AP2/ERF were studied in tomato plants by means of Northern RNA hybridization and immunoblotting of total proteins. Results. Northern hybridization revealed very quick and strong expression of SlWRKY33 at elevated concentration of salt and water deficit, and rela-tively late and weaker expression of SlERF5 genes. Western hybridization with specific polyclonal antibodies revealed that during water deficit SlERF5 and SlWRKY33 were intensively expressed in variety of tissues of tomato plants. SlERF5 expressed in shoot apex, young leaves, roots and stems, while SlWRKY33 expressed in the same tissues as above and in axillary buds. Conclusions. Obtained results indicate that both SlWRKY33 and SlERF5 are involved in plant responses to abiotic stresses like elevated salt concentration and water deficit.
Keywords: Solanum lycopersicum L., transcription factor, cloning, immunohybridization abiotic stresses.