Primary structures homology of glycosyltransferases from landomycines synthetic ways of streptomyces
Abstract
Aims. defining of evolutionary relationship of glycosyltransferases which catalyzing synthesis of carbohydrate chain of landomycines in producing microorganisms (Streptomyces globisporus 1912, S. syanogenus S 136 and uncultivated microorganisms from soil of Arizona, USA). Methods. Information about the aminoacid sequences of the enzymes from the available Internet databases was used in this study. In silico analysis of patterns structures was performed using the technical capaibilities of the program BLAST. Results. Degree of homology of enzymes structures (D-olivosyltransferases and L- rhodinyltransferases) within the same organism and different producers was determined. The amino acid structures of analogous glycosyltransferases (LanGT1/LndGT1/Orf27, LanGT2/LndGT2/Orf29 and LanGT4/LndGT4/Orf32) synthesizing carbohydrate chain of landomycin E all three producers were identical more than 75%, meanwhile there was less than 33% identity of enzymes strucrures (LanGT1/LanGT2/LanGT4, LndGT1/LndGT2/LndGT4, Orf27/Orf29/Orf32) within each particular microorganism. Conclusions. Evolutionary relationship between analogous enzymes was revealed: they are ortologs. Two enzymes (LanGT3 and LanGT1) of S. cyanogenus S136 were identified as paralogous ones.
Key words: structure, in silico analysis, homology, ortholog, paralog, glycosyltransferase.