New insights into regulation of specialized metabolism of Streptomyces viridosporus ATCC14672
Abstract
Aim. Streptomyces viridosporus ATCC14672 produces moenomycins (MOE), direct nanomolar inhibitors of bacterial peptidoglycan glycosyltransferases. Low MOE titers complicate their scaled-up purification, blurring MOE translational prospects. We took genetic approach to interrogate the involvement of several well-known pleiotropic regulators in MOE biosynthesis. Methods. Bacterial genetics and bioassays were combined to generate recombinant strains harboring additional copies of selected genes, and to assess their effects on MOE production. Results. The promoters of MOE biosynthetic genes harbor operators for pleiotropic transcriptional factors. We show here that, out of several tested regulatory genes, bldD is able to activate the production of unknown antibiotic in MOE-deficient mutant, dO5, whereas in ATCC14672 total antibiotic activity dropped in response to bldD. The dominant-negative allele of lsr2 positively impacted antibiotic activity in ATCC14672 and dO5. We also tested the effects of several broad-specificity transporter genes on dO5. Conclusions. Our study adds new players to the network of genes impacting MOE production. S. viridosporus, under certain conditions, is capable of producing an unknown antibiotic, whose elimination might be tested to improve MOE titers.
References
Ostash B., Makitrynskyy R., Yushchuk O., Fedorenko V. Structural diversity, bioactivity, and biosynthesis of phosphoglycolipid family antibiotics: recent advances. BBA Adv. 2022. Vol. 2. P. 100065. https://doi.org/10.1016/j.bbadva.2022.100065.
Ostash B., Walker S. Moenomycin family antibiotics: chemical synthesis, biosynthesis, and biological activity. Nat. Prod. Rep. 2010. Vol. 27. P. 1594–1617. https://doi.org/10.1039/c001461n.
Okeke I. et al. The scope of the antimicrobial resistance challenge. Lancet. 2024. Vol. 403. P. 2426–2438. https://doi.org/10.1016/S0140-6736(24)00876-6.
Schuricht U. et al. The biosynthesis of moenocinol, the lipid part of the moenomycin antibiotics. Tetrahedron Lett. 2001. Vol. 42. P. 3835–3837. https://doi.org/10.1016/S0040-4039(01)00569-X.
Augustijn H., Roseboom A., Medema M., van Wezel G. Harnessing regulatory networks in Actinobacteria for natural product discovery. J. Ind. Microbiol. Biotechnol. 2024. Vol. 51. P. kuae011. https://doi.org/10.1093/jimb/kuae011.
Koshla O., Lopatniuk M., Rokytskyy I., Yushchuk O., Dacyuk Y., Fedorenko V., Luzhetskyy A., Ostash B. Properties of Streptomyces albus J1074 mutant deficient in tRNALeuUAA gene bldA. Arch. Microbiol. 2017. Vol. 199. P. 1175–1183. https://doi.org/10.1007/s00203-017-1389-7.
Gehrke E., Zhang X., Pimentel-Elardo S., Johnson A., Rees C., Jones S., Gehrke S., Turvey S., Boursalie S., Hill J., Carlson E., Nodwell J., Elliot M. Silencing cryptic specialized metabolism in Streptomyces by the nucleoid-associated protein Lsr2. Elife. 2019. Vol. 8. P. e47691. https://doi.org/10.7554/eLife.47691.
Tseduliak V., Dolia B., Ostash I., Lopatniuk M., Busche T., Ochi K., Kalinowski J., Luzhetskyy A., Fedorenko V., Ostash B. Mutations within gene XNR_2147 for TetR-like protein enhance lincomycin resistance and endogenous specialized metabolism of Streptomyces albus J1074. J. Appl. Genet. 2023. Vol. 64. P. 185–195. https://doi.org/10.1007/s13353-022-00738-4.
Siegl T., Luzhetskyy A. Actinomycetes genome engineering approaches. Antonie Van Leeuwenhoek. 2012. Vol. 102. P. 503–516.
Hindra Elliot M. Multifactorial genetic control and magnesium levels govern the production of a Streptomyces antibiotic with unusual cell density dependence. mSystems. 2024. Vol. 9. P. e0136823. https://doi.org/10.1128/msystems.01368-23.
Wang K., Liu N., Shang F., Huang J., Yan B., Liu M., Huang Y. Activation of secondary metabolism in red soil-derived streptomycetes via co-culture with mycolic acid-containing bacteria. Microorganisms. 2021. Vol. 9. P. 2187. https://doi.org/10.3390/ microorganisms9112187.
Rempel S., Gati C., Nijland M., Thangaratnarajah C., Karyolaimos A., de Gier J., Guskov A., Slotboom D. A mycobacterial ABC transporter mediates the uptake of hydrophilic compounds. Nature. 2020. Vol. 580. P. 409–412. https://doi.org/10.1038/s41586-020-2072-8.
Makitrynskyy R., Tsypik O., Nuzzo D., Paululat T., Zechel D., Bechthold A. Secondary nucleotide messenger c-di-GMP exerts a global control on natural product biosynthesis in streptomycetes. Nucleic Acids Res. 2020. Vol. 48. P. 1583–1598. https://doi.org/10.1093/nar/gkz1220.