Structural features of carrot α-tubulin predetermining the natural resistance to dinitroaniline herbicides

  • O. G. Melnyk Institute of Food Biotechnology and Genomics NAS of Ukraine, Ukraine, 04123, Kyiv, Baidy Vyshnevetskoho str., 2A; Educational and Scientific Center "Institute of Biology and Medicine" of Taras Shevchenko National University of Kyiv, Ukraine, 03022, Kyiv, acad. Glushkova ave., 2 https://orcid.org/0000-0002-4249-9175
  • S. P. Ozheredov Institute of Food Biotechnology and Genomics NAS of Ukraine, Ukraine, 04123, Kyiv, Baidy Vyshnevetskoho str., 2A https://orcid.org/0000-0003-4710-0706
  • Y. B. Blume Institute of Food Biotechnology and Genomics NAS of Ukraine, Ukraine, 04123, Kyiv, Baidy Vyshnevetskoho str., 2A https://orcid.org/0000-0001-7078-7548
  • P. A. Karpov Institute of Food Biotechnology and Genomics NAS of Ukraine, Ukraine, 04123, Kyiv, Baidy Vyshnevetskoho str., 2A https://orcid.org/0000-0002-6876-642X
Keywords: α-tubulin, dinitroanilines, herbicides, resistance, trifluralin, microtubules

Abstract

Aim. To explain the natural resistance of Daucus carota L. to dinitroaniline herbicides. To clarify features of the carrot α-tubulin that may affect formation of the ligand-protein complex based on the structural and electrostatic analysis of the ligand-binding site. Methods. Reconstruction of the spatial structure of α-tubulin from D. carota and Toxoplasma gondii using profile (Swiss-Model) and de-novo (AlphaFold2) modeling. Molecular dynamics (MD) simulations of the built 3D-models in Gromacs. Analysis of the molecular electrostatics with PDB2PQR/APBS tools. Visualization and analysis of molecular structures in PyMOL. Results. It has been shown that along with the typical positive charge of the dinitroaniline-binding pocket, all isotypes of carrot α-tubulin demonstrate negatively charged regions that may cause conflicts with the nitro-groups of the ligands. Also, the MD-stable negatively charged "bridge" between Cys316 and the aryl-fragment of Phe255 was observed in all α-tubulin isotypes. In our opinion, it not only competes with the cyclic fragment of dinitroanilines, but overall prevent the opening of the site pocket in carrot α-tubulin. Conclusions. It was clarified that natural resistance of D. carota to dinitroaniline herbicides may be associated with steric and electrostatic conflicts observed in in all α-tubulin isotypes. In our opinion, it prevents interaction with dinitroaniline compounds at the stage of primary site recognition on the early stages of protein-ligand complex formation.

References

Nyporko A. Y., Yemets A. I., Brytsun V. N., Lozinsky M. O., Blume Y. B. Structural and biological characterization of the tubulin interaction with dinitroanilines. Cytol. Genetics. 2009. Vol. 43. P. 267–282. 10.3103/S0095452709040082.

Chen J, Yu Q., Patterson E., Sayer C., Powles S. Dinitroaniline herbicide resistance and mechanisms in weeds. Front Plant Sci. 2021. Vol. 12. P. 634018. doi: 10.3389/fpls.2021.634018.

Yemets А. І., Blume Ya. B. Progress in plant polyploidization based on antimicrotubular drugs. The Open Horticult. J. 2008. Vol. 1 (1). P. 15–20. doi: 10.2174/1874840600801010015

Touchell D. H., Palmer I.E., Ranney T.G. In vitro ploidy manipulation for crop improvement. Front. Plant Sci. 2020. Vol. 3 (11). P. 722. doi: 10.3389/fpls.2020.00722.

Giglio A., Vommaro M. L. Dinitroaniline herbicides: a comprehensive review of toxicity and side effects on animal non-target organisms. Environ. Sci. Pollut. Res. Int. 2022. Vol. 29 (51). P. 76687-76711. doi: 10.1007/s11356-022-23169-4.

Vaughan M.A., Vaughn K.C. Carrot microtubules are dinitroaniline resistant. I. Cytological and cross-resistance studies. Weed Res. 1988. Vol. 28. P. 73–83. doi: 10.1111/j.1365-3180.1988.tb00789.x

Affeldt R., MacKenzie J., Martens B. Carrot tolerance to pendimethalin and oxyfluorfen. Central Oregon Agricultural Research Center (Oregon State University) 2007. Annual Report. Special Report 1084 (August 2008). 2008. P. 15-17.

Morrissette N.S., Mitra A., Sept D., Sibley L.D. Dinitroanilines bind alpha-tubulin to disrupt microtubules. Mol. Biol. Cell. 2004. Vol. 15(4). P. 1960-1968. doi: 10.1091/mbc.e03-07-0530.

Blume Y.B., Nyporko A.Y., Yemets A.I., Baird W.V. Structural modeling of the interaction of plant alpha-tubulin with dinitroaniline and phosphoroamidate herbicides. Cell Biol Int. 2003. Vol. 27 (3). P. 171-174. doi: 10.1016/s1065-6995(02)00298-6.

Ma C., Tran J., Gu F., Ochoa R., Li C., Sept D., Werbovetz K., Morrissette N. Dinitroaniline activity in Toxoplasma gondii expressing wild-type or mutant alpha-tubulin. Antimicrob. Agents Chemother. 2010. Vol. 54 (4). P. 1453-1460. doi: 10.1128/AAC.01150-09.

Ma C., Li C., Ganesan L., Oak J., Tsai S., Sept D., Morrissette N. S. Mutations in alpha-tubulin confer dinitroaniline resistance at a cost to microtubule function. Mol. Biol. Cell. 2007. Vol. 18(12). P. 4711-4720. doi: 10.1091/mbc.e07-04-0379.

Aguayo-Ortiz R., Dominguez L. Unveiling the possible oryzalin-binding site in the α-tubulin of Toxoplasma gondii. ACS Omega. 2022. Vol. 7(22). P. 18434-18442. doi: 10.1021/acsomega.2c00729.

Melnyk O.G., Blume R.Ya., Karpov P.A. Differences in amino acid composition of carrot α-tubulin potentially confer the resistance to dinitroaniline herbicides. Faktori Eksp. Evolucii Organizmiv. 2023. Vol.32. P. 47-52. doi: 10.7124/FEEO.v32.1534.

Jurrus E., Engel D., Star K., Monson K., Brandi J., Felberg L.E., Brookes D.H., Wilson L., Chen J., Liles K. et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 2018. Vol. 27 (1). P. 112-128. doi: 10.1002/pro.3280.

Jones G., Willett P., Glen R.C., Leach A.R., Taylor R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol. 1997. Vol. 267 (3). P. 727-748. doi: 10.1006/jmbi.1996.0897.

Abraham M., Alekseenko A., Bergh C., Blau C., Briand E., Doijade M., Fleischmann S., Gapsys V., Garg G., Gorelov S., et al. GROMACS 2023 Manual. doi: 10.5281/zenodo.7588711.