Prediction of protein-ligand binding sites modulating activity of MAST protein kinases

  • P. A. Karpov Institute of Food Biotechnology and Genomics NAS of Ukraine, Ukraine, 04123, Kyiv, Baidy Vyshnevetskoho str., 2A https://orcid.org/0000-0002-6876-642X
  • A. O. Steshenko Institute of Food Biotechnology and Genomics NAS of Ukraine, Ukraine, 04123, Kyiv, Baidy Vyshnevetskoho str., 2A; Educational Scientific Center "Institute of Biology and Medicine" of Taras Shevchenko National University of Kyiv, Ukraine, 03022, Kyiv, acad. Glushkov ave., 2
  • S. P. Ozheredov Institute of Food Biotechnology and Genomics NAS of Ukraine, Ukraine, 04123, Kyiv, Baidy Vyshnevetskoho str., 2A https://orcid.org/0000-0003-4710-0706
  • Y. B. Blume Institute of Food Biotechnology and Genomics NAS of Ukraine, Ukraine, 04123, Kyiv, Baidy Vyshnevetskoho str., 2A https://orcid.org/0000-0001-7078-7548
Keywords: MAST family, protein kinases, inhibitors, ligands, binding site

Abstract

Aim. Identification of the protein-ligand binding sites, that may be the target of compounds, affecting individual human protein kinases of the MAST family (MAST1, 2, 3, 4 and MASTL / GWL). Methods. Literature and database search. Comparison of protein and ligand structures. Protein structure modeling, structural superimposition, etc. Results. The structural alignment demonstrates significant similarity of catalytic domains in MAST1, 2, 3, 4 and MASTL (GWL). It justifies transferring of reference ligands from PDB structures to human MASTs, discovering potential sites of ligand binding. 13 sites of ligand-binding were specified based on refrence ligands, transferred from RCSB Protein Data Bank structures, and differences in sites amino acid composition of MAST family members were discovered. Сonclusions. Based on the differences in the amino acid composition of the studied pockets in MAST1, 2, 3, 4 and MASTL (GWL), the sites B, C, D, E, F, were selected for further study and virtual screening for new selective inhibitors of individual members of MAST protein kinase family.

References

Rumpf M., Pautz S., Drebes B., Herberg F. W., Müller H. J. Microtubule-associated serine/threonine (MAST) kinases in development and disease. Int. J. Mol. Sci. 2023. Vol. 24 (15). P. 11913. doi: 10.3390/ijms241511913.

Karpov P. A., Nadezhdina E. S., Yemets A. I., Matusov V. G., Nyporko A. Y., Shashina N. Y., Blume Y. B. Bioinformatic search of plant microtubule-and cell cycle related serine-threonine protein kinases. BMC Genomics. 2010. Vol. 11 (Suppl 1). S14. doi: 10.1186/1471-2164-11-S1-S14.

Laufkötter O., Hu H., Miljković F., Bajorath J. Structure- and similarity-based survey of allosteric kinase inhibitors, activators, and closely related compounds. J. Med. Chem. 2022. Vol. 65 (2). P. 922–934. doi: 10.1021/acs.jmedchem.0c02076.

Tripathy R., Leca I., van Dijk T., Weiss J., van Bon B. W., Sergaki M. C., Gstrein T., Breuss M., Tian G., Bahi-Buisson N., et al. Mutations in MAST1 cause mega-corpus-callosum syndrome with cerebellar hypoplasia and cortical malformations. Neuron. 2018 Vol. 100 (6). P. 1354–1368. e5. doi: 10.1016/j.neuron.2018.10.044.

Zaru R., Magrane M., Orchard S. UniProt Consortium. Challenges in the annotation of pseudoenzymes in databases: the Uni-ProtKB approach. FEBS J. 2020. Vol. 287 (19). P. 4114-4127. doi: 10.1111/febs.15100.

Xu Q., Yin S., Yao Y., Li X., Song B., Yang Y., Liu Y., Chen R., Li J., Ma T., Meng X., Huang C., Li J. MAST3 modulates the inflammatory response and proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Int. Immunopharmacol. 2019. Vol. 105900. doi: 10.1016/j.intimp.2019.105900.

Lee S. J., Kim K. H., Lee D. J., Kim P., Park J., Kim S. J., Jung H. S. MAST4 controls cell cycle in spermatogonial stem cells. Cell Prolif. 2023. Vol. 56 (4). e13390. doi: 10.1111/cpr.13390.

Zhang X., Xiao N., Cao Y., Peng Y., Lian A., Chen Y., Wang P., Gu W., Xiao B., Yu J., Wang H., Shu L. De novo variants in MAST4 related to neurodevelopmental disorders with developmental delay and infantile spasms: Genotype-phenotype association. Front. Mol. Neurosci. 2023. Vol. 16. P. 1097553. doi: 10.3389/fnmol.2023.1097553.

Voets E., Wolthuis R.M. MASTL is the human orthologue of Greatwall kinase that facilitates mitotic entry, anaphase and cytokinesis. Cell Cycle. 2010. Vol. 9 (17). P. 3591–601. doi: 10.4161/cc.9.17.12832.

Coudert E., Gehant S., de Castro E., Pozzato M., Baratin D., Neto T., Sigrist C. J. A., Redaschi N., Bridge A. UniProt Consortium. Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics. 2023. Vol.3 9 (1). doi: 10.1093/bioinformatics/btac793.

Cramer P. AlphaFold2 and the future of structural biology. Nat. Struct. Mol. Biol. 2021. Vol. 28 (9). P. 704–705. doi: 10.1038/s41594-021-00650-1.

Engel M. The PIF Pocket of AGC Kinases: A target site for allosteric modulators and protein–protein interaction inhibitors. In: Methods and Principles in Medicinal Chemistry. Mannhold R., Kubinyi H., Folkers G., Eds. 2013. P. 187–223. doi: 10.1002/9783527648207.ch9.

Liu Y., Gray N.S. Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol. 2006. Vol. 2 (7). P. 358–364. doi: 10.1038/nchembio799.

Han S., Czerwinski R. M., Caspers N. L., Limburg D. C., Ding W., Wang H., Ohren J. F., Rajamohan F., McLellan T. J., Unwalla R. et al. Selectively targeting an inactive conformation of interleukin-2-inducible T-cell kinase by allosteric inhibitors. Biochem. J. 2014. Vol. 460 (2). P. 211–222. doi: 10.1042/BJ20131139.

Kufareva I., Bestgen B., Brear P., Prudent R., Laudet B., Moucadel V., Ettaoussi M., Sautel C.F., Krimm I. et al. Discovery of holoenzyme-disrupting chemicals as substrate-selective CK2 inhibitors. Sci. Rep. 2019. Vol. 9 (1). P. 15893. doi: 10.1038/s41598-019-52141-5.