DNA methylation in plant adaptation to changing environment

  • E. L. Kordyum M. G. Kholodny Institute of Botany, NAS of Ukraine Ukraine, 01601, Kyiv, Tereshchenkivska str., 2
  • D. V. Dubyna M. G. Kholodny Institute of Botany, NAS of Ukraine Ukraine, 01601, Kyiv, Tereshchenkivska str., 2
Keywords: adaptation, biodiversity, DNA methylation, epigenetics, phenotypic plasticity

Abstract

The article presents a mini review of the current and updated, significantly expanded in recent decades information on DNA methylation changes in plant responses to unfavorable environmental factors, which allows it to consider as ecological epigenetics (eco-epi). Epigenetic regulation of gene expression is considered as the main source of adaptive phenotypic plasticity. We emphasize a great potential of further studies of the epigenetic regulatory systems in phenotypic plasticity of a wide range of non-model species in natural populations and agrocenoses for our advanced understanding of the molecular mechanisms of plant existence in the changing environment and thus for forecasting the effects of global climate changes on biodiversity and crop yield. Specific taxa of the Ukrainian flora which, in authors’ opinion, are promising and interesting for this type of research, are recommended. 

References

Miner B., Sultan S., Morgan S. G., Padilla D. K., Relyeae R. A. Ecological consequences of phenotypic plasticity. Trend Ecol. Evol. 2006. Vol. 20. P. 686–692. doi: 10.1016/j.tree.2005.08.002.

Kelly S. A., Panhuis T. M., Stoehr A. M. Phenotypic plasticity: molecular mechanisms and adaptive significance. Compr. Physiol. 2012. Vol. 2. P. 1417–1439. doi: 10.1002/cphy.c110008.

Kordyum E. L., Dubyna D. V. Phenotypic plasticity in plant adaptation and coexistence. Int. J. Adv. Res. Bot. 2019. Vol. 5. P. 8–13. doi: 10.20431/2455-4316.0503002

Freeland, J. Molecular Ecology. Chichester (UK): Wiley-Blackwell, 2020. doi: 10.1002/9780470979365.

Miryeganeh M., Saze H. Epigenetic inheritance and a paradigm shift in evolutionary ecology. Population Ecology. 2019. Vol. 62. P. 1–27. doi: 10.1002/1438-390X.12018.

Dar F. A., Mushtaq N. U., Saleem S., Rehman R. U., Dar TUH, Hakeem K. R. Role of epigenetics in modulating phenotypic plasticity against abiotic stresses in plants. Int. J. Genomics. 2022. 1092894. doi: 10.1155/2022/1092894.

Lamka G. F., Harder A. M., Sundaram M., Schwartz T. S., Christie M. R., DeWoody J. A., Willoughby J. R. Epigenetics in ecology, evolution, and conservation. Front. Ecol. Evol. 2022. Vol. 10. doi: 10.3389/fevo.2022.871791.

Herman J. J., Sultan S. E. DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proc. Royal Soc. Sec. Biol. Sci. 2016. doi: 10.1098/rspb.2016.0988.

Kumar S., Mohapatra T. Dynamics of DNA methylation and its functions in plant growth and Development. Front. Plant Sci. 2021. Vol. 12. 596236. doi: 10.3389/fpls.2021.596236.

Sun M., Yang Z., Liu L., Duan L. DNA methylation in plant responses and adaption to abiotic stresses. Int. J. Mol. Sci. 2022. Vol. 23. 6910. doi: 10.3390/ijms23136910.

Henderson J.R., Jacobsen S.E. Epigenetic inheritance in plants. Nature. 2007. Vol. 447. P. 418–424. doi: 10.1038/nature05917.

Köhler C., Springer, N. Plant epigenomics – deciphering the mechanisms of epigenetic inheritance and plasticity in plants. Genome Biol. 2017. Vol. 18. doi: 10.1186/s13059-017-1260-9.

Kuiper P. J. C. Adaptation mechanisms of green plants to environmental stress. Stress of Life. Annals N.Y. Acad. Sci. 1998. Vol. 851. P. 209–215. doi: 10.1111/j.1749-6632.1998.tb08995.x.

Cubas, P., Vincent, C., Coen, E. An epigenetic mutation responsible for natural variation in floral symmetry. Nature. 1999. Vol. 401. P. 157–161. doi: 10.1038/43657.

Jacobsen S. E., Meyerowitz E. M. Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science. 1997. Vol. 277. P. 1100–1103. doi: 10.1126/science.277.5329.1100.

Manning K., Tör M., Poole M., Hong Y., Thompson A. J., King G., Giovannoni J. J., Seymour G. B. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 2006. Vol. 38. P. 948–952. doi: 10.1038/ng1841.

Chwialkowska K., Korotko U., Kwasniewski M. DNA methylation analysis in barley and other species with large genomes. Methods Mol. Biol. 2019. 1900. P. 253–268. doi: 10.1007/978-1-4939-8944-7

Kordyum E. L., Dubyna D. V. Role of epigenetic regulation in lant adaptive plasticity. Ukr. Bot. J. 2021. Vol. 78. (5). P. 347–359. doi: 10.15407/ukrbotj78.05.347. [in Ukrainian]

Miryeganeh M. Plants' epigenetic mechanisms and abiotic stress. Genes (Basel). 2021. Vol. 12. 1106. doi: 10.3390/genes12081106.

Sun C., Ali K., Yan K., Fiaz S., Dormatey R., Bi Z. Z., Bai J. P. Exploration of epigenetics for improvement of drought and other stress resistance in crops: a review. Plants. 2021. Vol.10. 1226. doi: 10.3390/plants10061226.

Lieberman-Lazarovich M., Kaiserli E., Bucher E., Mladenov V. Natural and induced epigenetic variation for crop improvement. Curr. Opin. Plant Biol. 2022. Vol. 70. 102297. doi: 10.1016/j.pbi.2022.102297.

Sammarco I., Münzbergová Z., Latzel V. DNA methylation can mediate local adaptation and response to climate change in the clonal plant Fragaria vesca: evidence from a European-Scale Reciprocal Transplant Experiment. Front Plant Sci. 2022. Vol. 13. 827166. doi: 10.3389/fpls.2022.827166.

Ibañez V. N., Masuelli R. W., Marfil C. F. Environmentally induced phenotypic plasticity and DNA methylation changes in a wild potato growing in two contrasting Andean experimental gardens. Heredity. 2021. Vol. 126. P. 50–62. doi: 10.1038/s41437-020-00355-z.

Tomczyk P. P., Kiedrzyński M., Forma E. Changes in global DNA methylation under climatic stress in two related grasses suggest a possible role of epigenetics in the ecological success of polyploids. Sci. Rep. 2022. Vol. 12. 8322. doi: 10.1038/s41598-022-12125-4.

Zhang, D., Gan, Y., Le, L., Pu, L., Epigenetic variation in maize agronomical traits for breeding and trait improvement, J. Genetics Genomics. 2024. doi: 10.1016/j.jgg.2024.01.006.