Design of potential Ilp markers for Hordeum vulgare and H. marinum Atg2, Atg7, Atg8 genes
Abstract
Aim. Design of potential intron length polymorphism markers for ATG2, ATG7, ATG8 genes. Methods. Use of classical bioinformatics methods to search for loci encoding ATG2, ATG7, ATG8 in the Hordeum marinum genome based on homology with cultivated barley genes; analysis of exon-intron structure of genes, design of ILP markers. Results. The sequences of ATG2, ATG7, ATG8 genes in H. marinum were determined. Analyzed differences in the exon-intron structure of the ATG2, ATG7, ATG8 loci in cultivated (H. vulgare) and salt-resistant wild barley (H. marinum). 25 potential ILP markers were designed for introns that showed significant interspecies length polymorphism: 13 for ATG2, 6 for ATG7, 3 for ATG8A, 2 for ATG8B and 1 for ATG8D. Conclusions. Based on gene structure comparative analysis of the autophagosome formation proteins ATG2, ATG7, ATG8 of cultivated H. vulgare and salt-tolerasnt H. marinum, a number of introns are recommended for further use as a potential source of ILP markers for the study of interspecies genetic differentiation of cereals.
References
Greenway H. Plant response to saline substrates. I. Growth and ion uptake of several varieties of Hordeum during and after sodium chloride treatment. Austral. J. Biol. Sci. 1962. Vol. 15. P. 16–38 doi: 10.1071/bi9650763.
Garthwaite A. J., Bothmer R., Colmer T. D. Salt tolerance in wild Hordeum species is associated with restricted entry of Na+ and Cl- into the shoots. J. Exp. Bot. 2005. Vol. 56. P. 2365–2378. doi: 10.1093/jxb/eri229.
Mano Y., Takeda K. Genetic resources of salt tolerance in wild Hordeum species. Euphytica. 1998. Vol. 103. P. 137–141. doi: 10.1023/A:1018302910661.
Isayenkov S. V., Maathuis F. J. M. Plant salinity stress: many unanswered questions remain. Front. Plant Sci. 2019. Vol. 10. P. 80. doi: 10.3389/fpls.2019.00080.
Carmona A., Friero E., de Bustos A., Jouve N., Cuadrado A. The evolutionary history of sea barley (Hordeum marinum) revealed by comparative physical mapping of repetitive DNA. Annals Bot. 2013. Vol. 112 (9). P. 1845–1855. doi: 10.1093/aob/mct245.
Maršálová L., Vítámvás P., Hynek R., Prášil I. T., Kosová K. Proteomic response of Hordeum vulgare cv. Tadmor and Hordeum marinum to salinity stress: similarities and differences between a glycophyte and a halophyte. Front. Plant Sci. 2016. Vol. 7. P. 1154. doi: 10.3389/fpls.2016.01154.
Isayenkov S. V., Hilo A., Rizzo P., Tandron Moya Y. A., Rolletschek H. et al. Adaptation strategies of halophytic barley Hordeum marinum ssp. marinum to high salinity and osmotic stress. Int. J. Mol. Sci. 2020. Vol. 21. P. 9019. doi: 10.3390/ijms21239019.
Huang L., Kuang L., Li X., Wu L., Wu D., Zhang G. Metabolomic and transcriptomic analyses reveal the reasons why Hordeum marinum has higher salt tolerance than Hordeum vulgare. Environ. Exp. Bot. 2018. Vol. 156. P. 48–61. doi: 10.1016/j.envexpbot.2018.08.019.
Luo L., Zhang P., Zhu R., Fu J., Su J., Zheng J., Wang Z., Wang D., Gong Q. Autophagy Is rapidly induced by salt stress and is required for salt tolerance in Arabidopsis. Front. Plant Sci. 2017. Vol. 8. P. 1459. doi: 10.3389/fpls.2017.01459.
Yue J. Y., Wang Y. J., Jiao J. L., Wang, H. Z. Silencing of ATG2 and ATG7 promotes programmed cell death in wheat via inhibition of autophagy under salt stress. Ecotox. Environm. Safety. 2021. Vol. 225. P. 112761. doi: 10.1016/j.ecoenv.2021.112761.
Sayers E. W., Cavanaugh M., Clark K., Pruitt K. D., Schoch C. L., Sherry S. T., Karsch-Mizrachi I. GenBank. Nucl. Acids Res. 2021. Vol. 49 (D1). P. D92–D96. doi: 10.1093/nar/gkaa1023.
Kuznetsov A., Bollin C. J. NCBI Genome Workbench: Desktop Software for Comparative Genomics, Visualization, and GenBank Data Submission. Methods Mol. Biol. (Clifton, N.J.). 2021. Vol. 2231. P. 261–295. doi: 10.1007/978-1-0716-1036-7_16.
Kuang L., Shen Q., Chen L., Ye L., Yan T., Chen Z. H., Waugh R., Li Q., Huang L., Cai S., Fu L., Xing P., Wang K., Shao J., Wu F., Jiang L., Wu D., Zhang G. The genome and gene editing system of sea barleygrass provide a novel platform for cereal domestication and stress tolerance studies. Plant Commun. 2022. Vol. 3 (5). 100333. doi: 10.1016/j.xplc.2022.100333.
Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B. C., Remm M., Rozen S. G. Primer3 - new capabilities and inter faces. Nucl. Acids Res. 2012. Vol. 40 (15). e115. doi: 10.1093/nar/gks596.
Ye J., Coulouris G., Zaretskaya I., Cutcutache I., Rozen S., Madden T. L. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012. Vol. 13. P. 134. doi: 10.1186/1471-2105-13-134.
Kalendar R., Khassenov B., Ramankulov Y., Samuilova O., Ivanov K. I. FastPCR: An in silico tool for fast primer and probe design and advanced sequence analysis. Genomics. 2017. Vol. 109 (3–4). P. 312–319. doi: 10.1016/j.ygeno.2017.05.005.