Towards a paradigm shift in the fuctions of biologically active agents: herbicide-mediated hormesis

Keywords: BACs, herbicides, hormesis, receptors, redox

Abstract

One of the most important points to which I pay particularly close attention in this paper is the action of biologically active chemicals (BACs) in the living things. Theoretically, the action of BACs manifests itself in four stages, which are determined by the doses from the smallest to the largest: absence of visible effects, stimulation of biochemical and growth processes, inhibition of growth processes and death of the living things. Today, scientific research is mainly focused on the second stage of BACs action. At the same time, using of herbicides (killers of unwanted plants) in agriculture give evidens that they stimulate the growth of beneficial plants. The paradigm of only the stimulating action of BACs should be replaced by the paradigm of events at all four stages of BACs action in living organisms. The article proposes the mechanisms of events at all four stages of BACs action. The main focus is on redox reactions. Mechanisms of transformation of inactive BACs into reactive agents in endogenous redox reactions are described. This article also aims to focus the discussion on the analysis of the diversity of mechanisms underlying the action of natural and synthetic chemical agents.

References

Allender W. J. Effect of trifluoperazine and verapamil on herbicide stimulated growth of cotton. J Plant Nutr. 1997. Vol. 20. P. 69–80. doi: 10.1080/01904169709365234

Sterling T. M., Hall J. C. Mechanism of action of natural auxins and the auxinic herbicides. Herbicide Activity: Toxicology, Biochemistry and Molecular Biology. R. M. Roe et al. (Eds). IOS Press, 1997. P. 111–141.

Arooj M., Khan B. A., Nadeem M. A. et al. Low doses of atrazine cause hormesis in tribulus terrestris. Pak J Weed Sci Res. 2021. Vol. 27. P. 351–358. doi: 10.28941/pjwsr.v27i3.983

Cedergreen N. Herbicides can stimulate plant growth. Weed Research. 2008. Vol. 48. P. 429–438. doi: 10.1111/j.1365-3180.2008.00646.x

Dabney B. L., Patiño R. Low-dose stimulation of growth of the harmful alga, Prymnesium parvum, by glyphosate and glyphosate-based herbicides. Harmful Algae. 2018. Vol. 80. P. 130–139. doi: 10.1016/j.hal.2018.11.004

Calabrese E. J. Paradigm lost, paradigm found: The re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ Pollution. 2005. Vol. 138. P. 378–411. doi: 10.1016/j.envpol.2004.10.001

Belz R. G., Duke S. O. Herbicides and plant hormesis. Pest Manag Sci. 2014. Vol. 70. P. 698–707. doi: 10.1002/ps.3726

Kurchii B. A. What regulate the growth regulators? Second edition. Revised and expanded. Kiev : Logos Publisher; 2019. 209 p.

Beyl C. A., Sharma G. C. Picloram induced somatic embryogenesis in Gasteria and Haworthia. Plant Cell Tiss Org. 1983. Vol. 2. P. 123–132. doi: 10.1007/BF00043357

Fitch M. M. M., Moore P. H. Comparison of 2,4-D and picloram for selection of long-term totipotent green callus cultures of sugarcane. Plant Cell Tiss Org. 1990. Vol. 20. P. 157–163. doi: 10.1007/BF00041876

Hagen S. R., LeToureau D., Muneta P., Brown J. Initiation and culture of potato tuber callus tissue with picloram. Plant Growth Regul. 1990. Vol. 9. P. 341–345. doi: 10.1007/BF00024919

Hollósy F. Effect of ultraviolet radiation on plant cells. Micron. 2002. Vol. 33. P. 179–197. doi: 10.1016/S0968-4328(01)00011-7

Jankins G. I. Signal transduction in responses to UV-B radiation. Annu Rev Plant Biol. 2009. Vol. 60. P. 407–431. doi: 10.1146/annurev.arplant.59.032607.092953

Xu W., Di C., Zhou S. et al. Rice transcriptome analysis to identify possible herbicide quinclorac detoxification genes. Front Genet. 2015. Vol. 6. P. 306. doi: 10.3389/fgene.2015.00306

Duhoux A., Délye C. Reference genes to study herbicide stress response in Lolium sp.: Up-Regulation of P450 genes in plants resistant to acetolactate-synthase inhibitors. PLoS ONE. 2013. Vol. 8 (5). P. e63576. doi: 10.1371/journal.pone.0063576.

Zhang Z.-W., Yuan S., Xu F. et al. Mg-protoporphyrin, haem and sugar signals double cellular total RNA against herbicide and high-light-derived oxidative stress. Plant Cell Environ. 2021. Vol. 34. P. 1031–1042. doi: 10.1111/j.1365-3040.2011.02302.x

Cusaro C. M., Grazioli C., Capelli E. et al. Involvement of mirnas in metabolic herbicide resistance to bispyribac-sodium in Echinochloa crusgalli (L.) P. Beauv. Plants. 2022. Vol. 11. P. 3359. doi: 10.3390/plants11233359.

Pfaff D. W., Rubin R. T., Schneider J. E., Head G. A. Principles of hormone/behavior relations, 2nd edn. Academic Press, 2018. Elsevier Inc. doi: 10.1016/B978-0-12-802629-8.00007-3

Checker G. V., Kushwaha H. R., Kumari P., Yadav S. Role of phytohormones in plant defense: signaling and cross talk. In: Singh A., Singh I. K. (Eds) Molecular aspects of plant-pathogen interaction. Springer Nature Singapore, 2018. Pte Ltd. P. 159–184. doi: 10.1007/978-981-10-7371-7_7