Plant genome modification technologies and some aspects of their practical use

Keywords: genetic transformation, wheat, barley, legal regulation


Aim. To analyze modern methods of plant genome modification on the example of cereals and to evaluate the prospects of their use and practical significance. Methods. A review of available scientific sources and electronic resources containing data on existing and promising methods of genetic modification of cereals was conducted. Results. During the entire time of its development, mankind solved the issue of creating more productive agricultural crops that were adapted to the climatic conditions of existence. For this, domestication and selection based on spontaneous mutations were traditionally used. New technologies of genetic recombination, which have been developed in recent decades, make it possible to change the genome of plants in certain sites determined by the researcher. This has opened up unprecedented opportunities both in fundamental terms and in a whole range of applied aspects for elucidating the functions of specific genes and targeted improvement of the productivity of plants and some of them properties. Conclusions. Some modern new technologies of plant genome modifications are of significant scientific interest and practical importance. The use of these technologies is extremely important in many practical areas, especially for wheat and barley as the most agronomically important cereal crops in the world. Genome modifications agricultural crops require significant attention in terms of their safety and legal regulation of practical use. Information about modern methods of plant genome modification and directions for their use should be a mandatory element in educational courses on modern biotechnology in specialized educational institutions.


Ronald P. Plant genetics, sustainable agriculture and global food security. Genetics. 2011. Vol. 188. Р. 11–20. doi: 10.1534/genetics.111.128553.

Sovová T., Kerins G., Demnerová K., Ovesná J. Genome Editing with Engineered Nucleases in Economically Important Animals and Plants: State of the Art in the Research Pipeline. Curr. Issues Mol. Biol. 2017. Vol. 21 (1) Р. 41–62. doi: 10.21775/cimb.021.041.

Parry M. A. J., Madgwick P. J., Bayon C., Tearall K., Hernandez-Lopez A., Baudo M., Rakszegi M., Hamada W., Al-Yassin A., Ouabbou H. Mutation discovery for crop improvement. J. Exp. Bot. 2009. Vol. 60. Р. 2817–2825. doi: 10.1093/jxb/erp189.

McCallum C. M., Comai L., Greene E. A., Henikoff S. Targeting Induced LocalLesions IN Genomes (TILLING) for Plant Func-tional Genomics. Plant Physiol. 2000. Vol. 123. Р. 439–442. doi: 10.1104/pp.123.2.439.

Kumlehn J., Hensel G. Genetic transformation technology in the Triticeae. Breed. Sci. 2009. Vol. 59. Р. 553–560.

Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. A programmable dual-RNA-guided DNA endonu-clease in adaptive bacterial immunity. Science. 2012. Vol. 337. Р. 816–821. doi: 10.1126/science.1225829.

Ramírez-González R. H., Borrill P., Lang D., Harrington S. A., Brinton J., Venturini L., Davey M., Jacobs J., van Ex F., Pasha A., Uauy C. The transcriptional landscape of polyploid wheat. Science. 2018. Vol. 361 (6403). doi: 10.1126/science.aar6089.

Zhang L., Zhao G., Jia J., Liu Xu., Kong X. Molecular characterization of 60 isolated wheat MYB genes and analysis of heir expression during abiotic stress. Journal of Experimental Botany. 2012. Vol. 63 (1). Р. 203–214. doi: 10.1093/jxb/err264.

Rushton D. L., Tripathi P., Rabara R. C. Lin J., Ringler P., Boken A. K., Langum T. J., Smidt L., Boomsma D. D., Emme N. J., Chen X., Finer J. J., Shen Q. J. WRKY transcription factors: key components in abscisic acid signaling. Plant Biotechnol. J. 2012. Vol. 10 (1). Р. 2–11. doi: 10.1111/j.1467-7652.2011.00634.x.

Ishida Y., Tsunashima M., Hie, Y., Komari T. Wheat (Triticum aestivum L.) transformation using immature embryos. Methods Mol. Biol. 2015. Vol. 1223. Р. 189–198. doi: 10.1007/978-1-4939-1695-5_15.

Daghma D. E. S., Hensel G., Rutten T., Melzer M., Kumlehn J. Cellular dynamics during early barley pollen embryogenesis revealed by time-lapse imaging. Front. Plant Sci. 2014. Vol. 5. Р. 675. doi: 10.3389/fpls.2014.00675.

Otto I., Muller A., Kumlehn J. Barley (Hordeum vulgare L.) transformation using embryogenic pollen cultures. Methods Mol. Biol. 2015. Vol. 1223. Р. 85–99. doi: 10.1007/978-1-4939-1695-5_7.

Wang Y., Cheng X., Shan Q., Zhang Y., Liu J., Gao C., Qiu J.-L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 2014. Vol. 32. Р. 947–951. doi: 10.1038/nbt.2969.

Gerasimova S. V., Korotkova A. M., Hertig C., Hiekel S., Hoffie R., Budhagatapalli N., Otto I., Hensel G., Shumny V. K., Kochetov A. V. et al. Targeted genome modifcation in protoplasts of a highly regenerable Siberian barley cultivar using RNA-guided Cas9 endonuclease. Vavilovskii Zhurnal Genet. i Selektsii. 2019. Vol. 22. Р. 1033–1039.

Bae S., Kweon J., Kim H. S., Kim J.-S. Microhomology-based choice of Cas9 nuclease target sites. Nat. Methods. 2014. Vol. 11. Р. 705–706. doi: 10.1038/nmeth.3015.

Hensel G., Himmelbach A., Chen W., Douchkov D. K., Kumlehn J. Transgene expression systems in the Triticeae cereals. J. Plant Physiol. 2011. Vol. 168. Р. 30–44. doi: 10.1016/j.jplph.2010.07.007.

Xie K., Yang Y. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol. Plant. 2013. Vol. 6. Р. 1975–1983. doi: 10.1093/mp/sst119.

Sun Y., Jiao G., Liu Z., Zhang X., Li J., Guo X., Du W., Du J., Francis F., Zhao Y., Xia L. Generation of High-Amylose Rice through CRISPR / Cas9-Mediated Targeted Mutagenesis of Starch Branching Enzymes. Front. Plant. Sci. 2017. Vol. 8. Р. 298. doi: 10.3389/fpls.2017.00298.

Zhang Y., Bai Y., Wu G., Zou S., Chen Y., Gao C., Tang D. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J. 2017. Vol. 91. Р. 714–724. doi: 10.1111/tpj.13599.

E.A.S.A. Council Genome Editing: Scientific Opportunities, Public Interests and Policy Options in the European Union; EASAC Secretariat Deutsche Akademie der Naturforscher Leopoldina German National Academy of Sciences: Halle, Germany, 2017. P. 34.