Analysis of Atg proteins involved in the formation of the Atg1 complex, their interaction with the Atg8 protein during autophagosome maturation
Abstract
Aim. Relying on the data from numerous researches on the representatives of ATG proteins from H.sapiens and S.cerevisiae organisms, we decided to explore the difference between ATG proteins from plant organism. Subsequent stages comprised the determination of in silico phosphorylation effects on the native structure of the protein model and the possible influences on the stability of the three-dimensional complex by the molecular dynamics method. Methods. Methodologically, one can highlight the process of models elaboration on known sequences in AlphaFold 2.0 program and subsequent mechanistic review of molecular mobility of the obtained conformational models through the molecular dynamics in Gromacs 4.5 program and Charmm36 force field. Results. As a result of the model development and exploring the process of ATG-protein complexation, the geometrical specificities of the structures under investigation revealed the binding sites on the surface of the Atg1 complex components. We also suggested some areas for the intermolecular interactions based on the already published data on experimentl mutagenesis. Additively, we performed an analysis of the molecular dynamics simulations in the case of phosphorylation and its effect on the conformational mobility of these objects. Conclusions. Applying the computer simulation modelling methods we created the Atg1 complex elements and then analyzed these four proteins participating in the process.
References
Li H., Liao Y., Zheng X., Zhuang X., Gao C., Zhou J. Shedding Light on the Role of Phosphorylation in Plant Autophagy. FEBS letters. 2022. Vol. 596 (17). P. 2172–2185. doi: 10.1002/1873-3468.14352.
Zientara-Rytter K., Subramani S. Mechanistic Insights into the Role of Atg11 in Selective Autophagy. Journal of molecular biol-ogy. 2020. Vol. 432 (1). P. 104–122. doi: 10.1016/j.jmb.2019.06.017.
Meyer M. D., Winzeler J., Taylor S. M. et al. Mapping Critical Residues in ATG11’s Coiled-Coil 2 Domain that Block Multiple Interactions and Disrupt Selective Autophagy. Frontiers in cell and developmental biology. 2022. Vol. 9. 775364. doi: 10.3389/fcell.2021.775364.
Köfinger J., Ragusa M. J., Lee I. H., Hummer G., Hurley J. H. Solution structure of the Atg1 complex: implications for the architecture of the phagophore assembly site. Structure. 1993. Vol. 23 (5). P. 809–818. doi: 10.1016/j.str.2015.02.012.
Suzuki S. W., Yamamoto H., Oikawa Y., Kondo-Kakuta C., Kimura Y., Hirano H., Ohsumi Y. Atg13 HORMA domain recruits Atg9 vesicles during autophagosome formation. Proceedings of the National Academy of Sciences of the United States of America. 2015. Vol. 112 (11). P. 3350–3355. doi: 10.1073/pnas.1421092112.
Nakatogawa H., Ohbayashi S., Sakoh-Nakatogawa M., Kakuta S., Suzuki S. W., Kirisako H., Kondo-Kakuta C., Noda N. N., Yamamoto H., Ohsumi Y. The autophagy-related protein kinase Atg1 interacts with the ubiquitin-like protein Atg8 via the Atg8 family interacting motif to facilitate autophagosome formation. J Biol Chem. 2012. Vol. 287 (34). P. 28503–28507. doi: 10.1074/jbc.C112.387514.
Li F., Chung T., Vierstra R. D. AUTOPHAGY-RELATED11 plays a critical role in general autophagy- and senescence-induced mitophagy in Arabidopsis. The Plant cell. 2014. Vol. 26 (2). P. 788–807. doi: 10.1105/tpc.113.120014.
Wen X., Klionsky D. J. An overview of macroautophagy in yeast. Journal of molecular biology. 2016. Vol. 428 (9 Pt A). P. 1681–1699. doi: 10.1016/j.jmb.2016.02.021.
Li F., Vierstra R. D. Arabidopsis ATG11, a scaffold that links the ATG1-ATG13 kinase complex to general autophagy and selective mitophagy. Autophagy. 2014. Vol. 10 (8). P. 1466–1467. doi: 10.4161/auto.29320.
Noda N. N., Ohsumi Y., Inagaki F. Atg8-family interacting motif crucial for selective autophagy. FEBS Letters. 2010. Vol. 584 (7). P. 1379–1385. doi: 10.1016/j.febslet.2010.01.018.
Wang J., Xu Q., Sun J., Xu Y., Chai G., Berg T., Cernava Z., Ma Y., Chen Post-translational regulation of autophagy is involved in intra-microbiome suppression of fungal pathogens. Microbiome. 2021. Vol. 9. doi: 10.1186/s40168-021-01077-y.
Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F. T., de Beer TAP, Rempfer C., Bordoli L., Lepore R., Schwede T. SWISS-MODEL: homology modelling of protein structures та complexes. Nucleic Acids Res. 2018. Vol. 46 (1). P. 296–303. doi: 10.1093/nar/gky427.
Wang Q., Hou S. Type One Protein Phosphatase Regulates Fixed-Carbon Starvation-Induced Autophagy by Dephosphorylating ATG13a to Facilitate ATG1a-ATG13a Formation in Arabidopsis. bioRxiv. 2022. doi: 10.1101/2022.04.10.487768.
Fujioka Y., Suzuki SW., Yamamoto H., Kondo-Kakuta C., Kimura Y., Hirano H., Akada R., Inagaki F., Ohsumi Y., Noda N. N. Structural basis of starvation-induced assembly of the autophagy initiation complex. Nat Struct Mol Biol. 2014. Vol. 21 (6). P. 513–521. doi: 10.1038/nsmb.2822.
Puente C., Hendrickson R. C., Jiang X. Nutrient-regulated Phosphorylation of ATG13 Inhibits Starvation-induced Autophagy. J Biol Chem. 2016. Vol. 291 (11). P. 6026–6035. doi: 10.1074/jbc.M115.689646.