Calli cultures obtained via selection with heavy metal ions and their osmotic tolerance

Keywords: tobacco, cell selection, primary, secondary calli, osmotic stress tolerance

Abstract

Aim. It is established that the resistance to some heavy metal cations is combined with the osmotic stress tolerance. The resistance to barium ions correlates with the salinity tolerance whereas the cadmium cation resistance is combined with water stress deficit. It is known too about the differences between the tolerance levels of cell cultures and tolerance levels of plants. On this account the comparative estimation of the primary and secondary calli to simulated stresses is established. Methods. The tobacco was the object of the experiment. This plant is extremely sensitive to osmotic stresses. The salinity was simulated by the addition of sea water salts – 25.0 g/l; water stress was created by the addition of 0.8M of mannitol As calli proliferation marker relative fresh mass growth was used. Results. Primary and secondary tobacco calli there were obtained. Those cultures demonstrated resistance to lethal simulated stresses. Ва-resistant culture developed on medium with the addition of 25.0 g/l of sea water salts. Cd-resistant culture grew on medium. Conclusions. The appearance of tolerance is selected after the primary selection on media with heavy metal ions. The level of the tolerance did not decrease within the cultivating period.

References

Sergeeva L. E., Bronnikova L. I. Cell selection with barium ions for obtaining genetically modified salt tolerant tobacco forms. Visn. Cherkas. Univ. Ser. Biol. 2020. Vol. 1. P. 71–78. doi: 10.31651/2076-5835-2018-1-2020-1-71-78.

Rubio F., Nieves-Cordones M., Aleman F., Martinez V. Relative contribution of AtHAK5 and AtHAK1 to K+ uptake in the high affinity range of concentrations. Phys. Plant. 2008. Vol. 134. Р. 598–608.

Fan L. M., Wu W.-H. Yang Y.-Y. Identification and characterization the inward K+ channel in the plasma membrane Brassica pollen protoplasts. Plant Cell Phys. 1999. Vol. 40 (8). Р. 859–865.

Tioleter D., Jaquinod M., Mangavel C., Passirani C., Saulner P., Manon S., Teyssier E., Payet N., Avelange-Macherel M.-H., Macherel D. Structure and function of a mitochondrial late embryogenesis abundant protein by desiccation Plant Cell. 2007. Vol. 19. P. 1580–1587. doi: 10.1105/tpc.107.050104.

Hasegawa P. M., Bressan R. A., Zhu J. K., Bohnert H. J. Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000. Vol. 51. P. 463–499. doi: 10.1146/annurev.arplant.51.1.463.

Dracup M. Why does in vitro cell selection not improve the salt tolerance of plants? Kluwer Academic Publishers. 1993. P.137–142.

Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Phys. Plant. 1962. Vol. 15. P. 473–497. doi: 10.1111/j.1399-3054.1962.tb08052.x.

Morran S., Eini O., Pyvovarenko T., Parent B., Singh R., Ismagul A., Eliby S., Shirley N., Langridge P., Lopato S. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors. Plant Biot. J. 2011. Vol. 9 (2). P. 230–249. doi: 10.1111/j.1467-7652.2010.00547.x.

Zhou M., Zheng S. Multi-omics uncover the mechanism of wheat under heavy metal stress. Int. J. Mol. Sci. 2022. Vol. 23 (24). P. 1–16. doi: 10.3390/ijms232415968.

Xinran D., Mingxing S., Yang J., Suxiang X., Jieqiong S., Hongfei W., Li Q. A transcription factor SlNAC10 gene of Suaeda liaotungensis regulates proline synthesis and enhances salt and drought tolerance. Int. J. Mol. Sci. 2022. Vol. 23 (17). P. 1–18. doi: 10.3390/ijms23179625.

Wang D.-M., Zhang J.-L. Flowers T. J. Low affinity Na+ uptake in the halophyte Suaeda maritima. Plant Phys. 2007. Vol. 145. Р. 559–571. doi: 10.1104/pp.107.104315.

Lestari E. G. In vitro selection and somaclonal variation for biotic and abiotic stress tolerance. Biodiversitas. 2006. Vol. 7 (3). P. 297–301.

Bahieldin A., Mahfouz H. T., Eissa H. F., Saleh O. M., Ramadad A. M., Ahmed I. A., Dyer W. E., El-Itriby H. A., Madkour M. A. Field evaluation of transgenic wheat plants stably expressing of HVA1 gene for drought tolerance. Phys. Plant. 2005. Vol. 123 (4). P. 421–427. doi: 10.1111/j.1399-3054.2005.00470.x.

Grauda D., Žagata K., Lanka G., Strazdina V., Fetere V., Lisina N., Krasnevska N., Fokina O., Mikelsone A., Ornicans R., Belogrudova I., Rashal I. Genetic diversity of wheat (Triticum aestivum L.), plants-regenerants produced by anther culture. Vavilov J. Gen. Breed. 2016. Vol. 20 (4). P. 537–544. doi: 10.18699/VJ16.176.

Alseekh S., Fernie A. R. Metabolomic 20 years on: what have we learned and what hurdles remain? Plant J. 2018. Vol. 94. P. 933–942. doi: 10.1111/tpj.13950.